

A group project final report on:

Advanced AGV Drive Control in a Pipeless Plant

Group members:

Angel Garza Mauricio Martinez Severich

Awjoykanti Bonik Shehabeldin Abdelgawad

Lusan Maharjan Seyed Ali Baradaran Birjandi

Supervised by:

Goran Stojanovski Shaghayegh Nazari

Sankaranarayanan Subramanian

April 7, 2015

http://www.bci.tu-dortmund.de/index.php

2

Table of Contents
1. Introduction ... 5

1.1 Motivation (why a pipeless plant) ... 5

1.1.1 The miniature pipeless plant ... 5

1.2 Plant module layout (previous implementation) .. 6

1.3 Objective of the group project ... 7

2. Hardware.. 8

2.1 iRobot Create .. 8

2.1.1 iRobot Create Open Interface .. 8

2.2 Sensors .. 9

2.2.1 Properties of the encoders ... 10

2.2.2 Limitations of the encoders ... 10

2.3 Modifications .. 11

2.4 Testing control with encoder feedback (opcode 142) .. 12

2.4.1 Results of linear movement of the AGVs with encoder feedback 13

2.4.2 Results angular movement with encoders feedback .. 14

2.5 Conclusion .. 15

3. Routing Module ... 16

3.1 Overview of operation ... 16

3.2 Previous state of routing module .. 16

3.3 Limitations of the current implementation ... 18

3.4 Modifications to router module’s output ... 19

3.5 Feed-Forward module’s principal of operation .. 19

3.6 Improvement of AGV movements (Ramp Velocity Profile) .. 20

3.6.1 Conversion of rectangular velocity profile to ramp velocity profile 21

3.6.2 Results and Conclusion... 22

4. Controller module .. 25

4.1 Robot kinematics .. 25

4.2 Controller .. 26

4.3 Conclusion .. 31

5. Image Processing and Localization ... 33

5.1 Camera vision ... 33

3

5.2 Image Processing .. 33

5.2.1 Introduction .. 34

5.2.2 Segmentation ... 34

5.2.3 Clustering .. 35

5.2.4 Position and orientation .. 36

5.3 Camera Calibration and Mapping .. 39

5.3.1 Advantages of using fisheye lenses ... 39

5.3.2 Disadvantages of using fisheye lenses ... 39

5.4 Factors affecting the reliability of the camera feedback .. 40

5.4.1 Solution to improve reliability of camera feedback.. 41

5.5 Problems associated with distortion introduced by the Fisheye lens 41

5.5.1 Compensating distortion introduced by the Fisheye lens .. 42

5.6 Mathematical Background ... 45

5.7 Results after Calibration... 46

5.8 Localization using the camera after calibration .. 47

5.9 Image processing and localization performance ... 47

6. Battery exchange ... 48

6.1 Requirements for exchanging the AGVs .. 48

6.2 Getting the battery level .. 48

6.3 Implementation .. 49

6.4 Assumptions ... 50

6.4.1 Implementation according to the assumptions .. 51

6.5 Result and Conclusions .. 52

6.6 Remark .. 52

7. Integration ... 54

7.1 Flowchart .. 54

8. Conclusion and further work ... 57

9. References .. 58

4

List of figures

Figure 1: Plant overview ... 6
Figure 2: Overview of communication .. 9
Figure 3: The TestRobot interface ... 12
Figure 4: Percentage of error for different velocities during linear movement (forward and backward) 13
Figure 5: Percentage of error for different velocities angular movement .. 14
Figure 6: Array generated by the “CollisionInfoForPath” class ... 16
Figure 7: Orientation along the sampling times ... 17
Figure 8: Arrays for AGV2 in group 0. ... 18
Figure 9: Ramp and rectangular velocity profiles ... 21
Figure 10: Example to illustrate the violation of ramp velocity profile ... 23
Figure 11: position representation of an AGV .. 25
Figure 12: shows the AGV route and respective intermediate points ... 27
Figure 13: open loop control block diagram ... 27
Figure 14: the curved path between two intermediate points ... 29
Figure 15: closed-loop system ... 30
Figure 16: Plant seen by fisheye camera .. 33
Figure 17 : Right image: Robot with the PCB. Left Image: segmentation of the LED ... 34
Figure 18 : Segmentation steps .. 35
Figure 19: k means clustering .. 36
Figure 20 : Clustering of 4 different LEDs Configuration ... 36
Figure 21: Identity markers of Robot I, II, III and IV .. 37
Figure 22 : Determine the main triangle ... 38
Figure 23: Find the apex ... 38
Figure 24: Orientation and midpoint .. 38
Figure 25: Vectors for the cross product ... 39
Figure 26: Noise due to reflections ... 40
Figure 27: Image after aperture size reduction .. 41
Figure 28: Before detection .. 43
Figure 29: After detection ... 43
Figure 30: Before and after distortion correction ... 47
Figure 31: Battery level information ... 49
Figure 32 Flow chart ... 55

 List of tables
Table 1: Linear movement error ... 13
Table 2: Angular movement error .. 14
Table 3: Robot moving with ramp velocity for 10 second ... 23
Table 4: Robot moving with different rectangular velocity for 10 second .. 23

5

1. Introduction
Angel Garza, Mauricio Martinez, Shehabeldin Abdelgawad, Seyedali Baradaranbirjandi

1.1 Motivation (why a pipeless plant)

Batch plants are of great importance in the chemical industry. In order to
increase the flexibility and efficiency of batch plants, replacing the maze of
pipes with one or multiple mobile vehicles that transport the material in the
plant has been proposed. The pipes can be replaced with multiple automated
guided vehicles, also referred to as AGVs. Pipe cleaning times which are
needed after every changeover would be saved in a pipeless plant. This
flexibility, however, comes at a cost. The problem of task/resource allocation
as well as collision-free movements of the mobile vehicles introduces new
challenges in a pipeless plant [16].

1.1.1 The miniature pipeless plant

To simulate a pipeless plant a miniature plant was built at the Process
Dynamics and Operations Group (DYN) in the scope of the European project
MULTIFORM. The plant aims to simulate the production of chemicals by
producing multi-layered and multi-colored plaster arts. The details of
producing the plasters are provided to the plant as recipes. The plant
comprises AGVs, four different stations controlled by a PLC, each station is
responsible for accomplishing a particular task in producing a layer of plaster
art:

• AGVs: used to transport the vessels between stations.

• Storage station: vessels (either empty or full) are stored in this station,
including vessel exchanges.

• Mixing station: adds and mixes compounds that are needed for plaster
hardening.

• Color stations: supply the different colored plasters. Two colors are
available per station.

There is also a camera that can be used to obtain visual feedback of the plant.
An overview of the plant can be seen in Figure 1.

6

Figure 1: Plant overview

1.2 Plant module layout (previous implementation)

The plant is implemented in a modular fashion to enable easy upgrading and
swapping of components thus making prototyping and new component
integration easy and simple.

Scheduler: The operation starts with a recipe selection phase, then it is passed
to the scheduler module. The scheduler module is then responsible for
assigning the recipes to the list of available AGVs. The Scheduler deals with
allocating the plant’s resources such that the plaster art recipes are executed.

Router: The router gets the generated schedule as an input and it is
responsible for generating paths for the movement of the AGVs which
participate in executing the given schedule. The router ensures collision free
movements of the AGVs by generating a velocity profile for each path.

Controller: The controller module is responsible for supplying the inputs (left
and right wheel velocities) to the AGVs, such that the AGVs reach their desired

7

destinations with the correct orientations, the location and orientation are
determined by the camera.

Vision system: The vision module is responsible for detecting the plant’s state;
this is done by detecting the positions and orientations of the AGVs relative to
the plant’s coordinate system. This is intended to be used as the controller’s
feedback. The project had an image processing algorithm, with an image
processing time of 250ms [1] and upon inspection needed to be faster.

1.3 Objective of the group project

The plant was operating on a modelica model, to simulate the real plant’s
operation. The objective of the group project is to provide the framework with
necessary controllers to first test and then carry out an execution of a set of
configurable recipes autonomously on the physical plant.

In order to achieve the main goal, the following improvements and
developments must first take place as part of the group project:

• Proper communication with AGVs must be established
o Reading data
o Sending information and commands

• A reliable control module must be developed
o Orientation reliability and correction
o Position reliability and correction

• A reliable low delay method of feedback for the controller module must
be implemented

o Use of encoders
o Use of camera feedback (image processing)

8

2. Hardware
Angel Garza Palomares

2.1 iRobot Create

The plant is equipped with Create robots from the company iRobot. As
mentioned before, these robots (so called Automated Guided Vehicles (AGV))
will perform the movement tasks inside the plant carrying the vessels to the
corresponding stations.

2.1.1 iRobot Create Open Interface

The Create Open Interface (OI) is a software interface for controlling Create’s
behavior and reading its sensors, this is done through a series of commands
called opcodes. To achieve this purpose, a processor capable of generating
serial commands should be connected to one of the two ports on the Create
providing serial communication [11].

In this project, the robots are already equipped with an Arduino board
connected to the Cargo Bay Connector. Therefore, it is possible to
communicate with the robots through the Arduino. Further, a communication
between the Arduino and the user (PC) is needed, for this purpose an Xbee
communication is already implemented.

The Arduino is the microcontroller which sends the corresponding opcodes to
the robot and the sensors’ information to the PC. As already mentioned, the
Arduino is connected through Cargo Bay Connector which provides a 5V
100mA supply when the robot is switched on; it also contains 4 digital inputs
and 4 digital outputs; the board with the proper connections was already
constructed in the previous work. For more information on the hardware
development, please see [1]. Finally the Xbee is used for the communication
between the PC and the microcontroller, the code on the PC determines the
speed for each wheel in order to carry out the tasks. In Figure2 an overview of
the communication is presented.

9

 Figure 2: Overview of communication

2.2 Sensors

The Create contains 431 different data packets from which sensory information
can be read. There are two supported communication modes for the transfer
of data packages, continuous and interrupt based. In continuous
communication mode that can be activated using opcode 148, there is a
continuous stream of sensory information every 15ms.On the other hand, the
interrupt based communication that can be activated using command opcode
142, means that the information is retrieved only when a certain event
happens (sampling time, button, etc.). Previously the opcode 148 was
implemented getting the information from all the sensors even though not all
data is useful for the project. However, some problems (explained in the
following chapters of this document) were encountered, not only of the
amount of obtained data, also the sampling time used by the implemented
opcode.

1There are 34 different data that can be obtained from the sensors, each having a specific packet ID; there are
2 more packet IDs that are unused; and finally 7 more packet IDs that contain a stream with more than one
type of data (refer to the Create Open Interface manual), in total 43 packet IDs .

Sensors

Calculations Feedback

Xbee
communication

PC (C#)

Arduino

iRobot Create

Open Interface
(OI)

Actuators

10

One of the goals of this project is to make a sensor fusion between the
encoders, which are integrated in the wheels of the Create, and the camera
vision system (the camera system is explained in chapter 5.) to get an accurate
location of each robot at the plant. In this section, the properties and
limitations of the encoders are discussed, as well as the modifications which
were done in this part during the project.

According to the manual of the robot, the linear and angular resolutions of the
encoders are:

Linear: (68 mm wheel diameter × 𝜋) / (32 teeth × 25 gearing reduction) =
0.27mm
Angular: 360 degrees / (32 teeth × 25 gearing reduction) = 0.45 degrees

However, the value is given as a signed integer value, therefore the exact
number in millimeters or degrees could not be obtained unless the value is an
exact integer.

2.2.1 Properties of the encoders

It is possible to read distance and angle information from the encoders (in
mm/s).Data is given as signed 16 bit integer, and the range is: -32768 – 32767.
It is mentioned in the manual of the Create that, for better accuracy, it is
better to keep the speed between -200 – 200 mm/s, please see [14], even
though the speed range is -500 – 500 mm/s. Distance and angle are obtained
using the packet ID 0, 2 or 6 as part of a group of sensors; or individually, the
packet ID 19 for distance and 20 for angle. Note that both data packets have a
size of 2 bytes.

2.2.2 Limitations of the encoders

Some limitations of the encoders have to be considered; first of all the fact that
every time the distance or angle is read from them the data gets cleared. After
every update the encoders start counting from zero, this is an issue when the
sampling time and the velocity are too small since it could lead to a distance
smaller than 1 millimeter which would always result in 0 millimeters since the
value is truncated and given as an integer. Given that the retrieved data is
given as an integer value a loss of information is present, i.e. 3.4 mm would be

11

read as 3 mm, so the error depends on how often the encoders are read and
also on the length of the path. The best way for having the most accurate
values would be to get the information as often as possible, but at the cost of
loss of information. Originally opcode 148 was implemented and the encoders
were being read every 15ms, this would mean if the robot moves at a speed of
50 mm/s, 66 updates occur in one second (note that after each update the
distance and angle values are cleared). So at every update, the value is less
than one (0.75mm). The value read is 0 at all time. If the entire movement is at
a low speed, the distance travelled from the computer’s perspective will be
zero. It has to be noticed that the error is much more pronounced if the angle
is read, because a bad orientation could lead to a totally different spot than
the desired one with the further movements.

In order to overcome this problem, a possible solution is to read the number of
encoder impulses, but due to software limitations this was not possible.

2.3 Modifications

Considering that reading the information of the sensors at a sampling time of
15ms is fast for the purposes in this project, which the idea is to use this
information as a source of feedback, it was decided to change it for a sampling
time of 200ms.This would reduce the error and the information loss between
two consequent samples would not affect the accuracy too much.

Thus, opcode 142 has to be used instead of opcode 148. This implementation is
done in the microcontroller’s code and opposed to the opcode 148 which is
called only once at the beginning starting the continuous streaming, opcode
142 was implemented in a way that it is called every 200ms. This change has
improved the accuracy but the error is still considerable specially while reading
the angle.

12

2.4 Testing control with encoder feedback (opcode 142)
Awjoykanti Bonik

To test the encoder accuracy an interface called TestRobot was developed. This
interface was created in order to be able to specify a desired distance or angle
and speed to the robot, the interface can be seen in Figure 3.

Figure 3: The TestRobot interface

The important input data fields for test purposes are:

• Distance/Angle: If checked, the value set in Value Distance/Angle is the
desired angle (positive means counter clockwise); if the box is not
checked, then the value set in Value Distance/Angle is the desired
distance (negative means backward).

• Value Distance/Angle: the desired distance or angle.

• Velocity value: the speed at which the robot will do the movement. The
sign determines the direction of the linear or angular movement (this
value can be changed while the robot is running)

While the robot is running, it will continuously update the distance by using
the encoder feedback. The frequency of the update depends on the sampling
time which is set in the microcontroller. Whenever the accumulated distance
or angle is greater than or equal to the desired value, a “0” velocity command
will be sent to the robot to stop. Linear distance was measured manually.

13

Figure 4: Percentage of error for different velocities during linear movement

(forward and backward)

0,8

6,5
7,7

8,8

0

2

4

6

8

10

0 100 200 300

Pe
rc

en
ta

ge
 o

f e
rr

or

(%
)

Velocity (mm/s)

2.4.1 Results of linear movement of the AGVs with encoder feedback

A test was carried out by running the robot for specific linear distance (forward
and backward) of 500 mm. Ten samples for each velocity that is presented in
Table 1 were taken.

Samples

Velocity
(mm/s)

1 2 3 4 5 6 7 8 9 10 Avg.
(mm)

Error
(%)

 50 509 501 509 498 493 515 510 492 495 503 502.5 0.5%
 -50 515 503 502 503 512 497 498 495 515 500 504 0.8%
 100 512 532 510 512 533 518 535 506 524 535 521.7 4.2%
-100 522 516 544 530 555 526 545 536 536 541 535.1 6.5%
 150 511 563 524 512 557 556 574 558 523 538 541.6 7.7%
-150 563 516 530 543 553 529 513 565 570 536 541.8 7.7%
 200 556 596 518 559 518 521 515 515 555 575 542.8 7.9%
-200 543 550 570 542 518 573 560 577 564 578 548.5 8.8%

Table 1: Linear movement error

The following figures show the percentage of error at some specific velocities
for both cases (forward and backward):

It can be observed that the error increases in fast movements.

0,5

4,2

7,7 7,9

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250

Pe
rc

en
ta

ge
 o

f e
rr

or

(%
)

Velocity (mm/s)

14

2.4.2 Results angular movement with encoders feedback

The same test was performed for the angular movement. The robot was tested
for a rotation (clockwise) of 360 degrees and 5 samples for each velocity were
taken. The test results are shown in Table 2:

The following graph shows the behavior of the error percentage for different
velocity values:

Figure 5: Percentage of error for different velocities angular movement

Considering the angular movement, the orientation error can lead the robot to
a different location.

4,8
5,4

6,6

8,1

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

Pe
rc

en
ta

ge
 o

f e
rr

or

(%
)

Velocity (mm/s)

Samples

Velocity
(mm/s)

1 2 3 4 5 Avg.
(degree)

Error
(%)

50 382 380 370 377 385 378 4.8
100 376 380 377 382 388 380.6 5.4
150 388 395 373 382 390 385.6 6.6
200 420 373 390 385 390 391.6 8.1

Table 2: Angular movement error

15

2.5 Conclusion

As mentioned in chapter 1, one of the purposes of this project is the use of the
odometry information in conjunction with the camera vision system as a
source of feedback for the controller (chapter 5), to avoid noisy measurements
or processing time from the camera. As it was discussed in this chapter, there
is a compromise between how often the sensors are read and the accuracy of
the information. The loss of information cannot be avoided or reduced by the
use of the encoder’s impulses; however, since detecting the impulses is not
possible for the encoders on the Create’s wheels, that option was discarded.

The controller works well for linear movements because the error introduced
by the odometry does not cause a big difference between the reached point
and the desired one. However, when the controller (using encoder’s feedback)
is used to achieve a desired orientation, the error becomes much more
considerable and a good result cannot be achieved.

After trying different options (opcodes, sampling times), the performance of
the controller for angular movements was not good enough, because unlike
linear movement, the error presented in angular movement could lead to a
large error; thus it was decided not to use the encoders as a source of
feedback, instead the camera vision system is used (discussed in chapter 5).

16

3. Routing Module
Shehabeldin Abdelgawad

3.1 Overview of operation

The plant as discussed in chapter 1 starts with a recipe selection phase which
when complete is passed to the scheduler module. The scheduler module is
then responsible for assigning the recipes to the list of available AGVs. The
schedule is then passed to the router module, where the movements of the
AGVs are calculated and collision is avoided using an A* algorithm. The routing
module’s job is to execute the schedule given by the scheduler while avoiding
collisions between the AGVs.

3.2 Previous state of routing module

The routing module’s output is a list of groups. Where each group corresponds
to a period of time in the schedule in which the AGVs move. It is important to
note that the movement times of the routing module is always shorter than
that given to the schedule to allow for correction and provide a safety margin.
For example the schedule is programmed such that each movement takes 15
seconds, then the routing module is set such that the longest movement takes
10 seconds for instance to provide time for the AGV’s pose correction. Each
group in the list contains a list of a class called the “CollisionInfoForPath”,
which corresponds to the robots that will move in that group. The
“CollisionInfoForPath” class contains the array of Path points for which the
AGV should pass by, the velocity array that the AGV should follow along its
path, as well as its name, Array of orientations and task ID, see Figure 6.

Figure 6: Array generated by the “CollisionInfoForPath” class

17

In the previous figure we can see the array of the first AGV of the group
number 0, it is important to notice that for each AGV that has to complete a
movement task, the amount of values for the path has to be the same than the
amount of values for the allOrientations and velocityProfile arrays; this means
that the AGV has to fulfill an specific orientation, position and velocity at each
sampling time. Since the orientation is considered to take zero time on the
path it was decided to stop every AGV running simultaneously (including the
global time) and run the controller to change the orientation of the AGV which
need it, for this purpose the allOrientations array is used, the current index is
compared with the previous index and if the values are different, the controller
is executed until the new orientation is reached, then the global time
continues from where it was stopped as well as the AGVs that were stopped
(in case any of them were stopped), see Figure 7.

Figure 7: Orientation along the sampling times

This is the resulted array for group number 0, in this group only AGV1 needs to
moved but the arrays for the other two AGVs have to exist, otherwise an “out
of range” exception will be shown, that’s why the arrays for AGV2 and AGV3
are created with null values, see Figure 8.

18

Figure 8: Arrays for AGV2 in group 0.

As it can be seen in Figure 8, the array for AGV2 is created even though it
doesn’t have to perform any movement, the same occurs for AGV3 at group 0.

3.3 Limitations of the current implementation

The current implementation of the routing module is not loop friendly since
the array is jagged, meaning that not all groups have the same number of AGVs
and the array has no structure. The first AGV in the group can be any AGV that
has been scheduled to move in the group. With this in mind, it is not possible
by only looking at the current group to identify which robot should move
without checking a string at every iteration. The major problem however is
that not all the AGVs have the same velocity profile length, as some may finish
earlier than others. To make the router module’s output more loop friendly
and easier to visualize and debug, some modifications were made.

It is important to note that the routing module assumes rotations to occur
instantaneously (rotations take 0 time). This is a negative aspect of the current
implementation of the routing module. Due to this assumption, when an AGV
rotation is detected during the following of the router modules velocity profile,
the global time is stopped as well as all other AGVs which are following velocity
profiles. This is done to simulate the instantaneous rotation of the AGV and
ensure collision free operation of the plant.

19

3.4 Modifications to router module’s output

Each group was modified to include all AGVs being considered on the plant at
the point of the route creation, this means that even if the robot does not
move in the current group it will have an entry which has a velocity
profile/array of zero and a null point array.

The velocity profiles are all of the same length corresponding to the longest
velocity profile of the group. If a velocity profile is extended it is padded with
zeros.

The orientations of each “CollisionInfoForPath” were of the same number as
the number of points which were 8-10 times less than the number of entries in
the velocity profiles. The orientations have been extended according to the
number of velocity entries such that the initial and final entries remain the
same. This will later provide an easily accessible method to obtain the
orientation reference for feedback.

3.5 Feed-Forward module’s principal of operation

The feed forward module obtains the router module’s output and works to
implement it on the AGVs. It is important to note that the plant operates in
two phases. The first is the “Feed-forward” phase in which the AGVs receive
their velocities directly from the Feed-Forward module without using any
feedback. The second phase is the “correction phase” in which the AGVs are
controlled using camera feedback to the final destination points of their path.

The “Feed-Forward” phase feeds the velocity profiles calculated by the routing
module to the robots at the intervals specified by the velocity profiles (100ms).
It is assumed by the routing module that the rotations happen instantaneously,
to simulate this instantaneous rotation the schedule’s time is stopped. The
rotations are done not using feed-forward but by using camera feedback.

The “correction phase” is executed at the beginning of each group to ensure
that the initial positions of the robots are correct before the start of the feed-
forward phase, and at the end of each phase to ensure that docking is possible.
For the docking procedure to be started, the AGV has to be approximately
50cm away from the station where it has to dock (straight line), there are two

20

black lines which the AGV has to follow with the help of two (left and right) of
the four cliff2 sensors on the Create robot in order to reach the exact position
where the action of the station takes place, finally with the help of the
bumper3 sensor (front part of the robot) the AGV detects when the position
has been reached. One must mention that the error incurred by the feed-
forward is not constant and changes with every run of the plant (random
error). During the correction phase the AGVs are controlled using the
controller which obtains feedback through the camera. The system is sampled
during this time as fast as possible to provide the best possible accuracy.

It is important to also note that the correction time is not constant and
depends on the amount of error introduced during the feed-forward phase.
For the plant to have enough time in all cases to correct the poses of the AGVs,
an upper bound for correction time is always added at the end of a group, if for
some reason the time is not enough for correction the plant would no longer
function correctly for the next group.

This procedure is repeated until the schedule is complete.

3.6 Improvement of AGV movements (Ramp Velocity Profile)
Lusan Maharjan

The main task of an AGV is to transport the fluid from one station to another
station for various processes such as mixing, filling, hardening and so on. The
fact that the fluid carried by the AGV reaches the destination safely should be
considered. Apart from these, it should be taken into consideration that, the
AGV should move to the desired destination accurately. Using the rectangular
velocity profile leads to sudden movements and stopping of the AGV to the
maximum velocity. Thus, the moment of inertia is highly observable in
rectangular velocity profile which introduces more error to the AGV movement
as well as it increases the chance of spilling the fluids from the vessel carried by
the AGV. But this is not the case with a ramp velocity profile.

2 The Create robot has 4 cliff signal sensors (left signal, front left signal, right signal and front right signal.
Packet ID 28, 29, 30 and 31 respectively). The signal of these sensors is returned as an unsigned 16-bit value
(Range: 0 – 4095)
3The bumper sensor returns a value of either 1 or 0; where 1 means that the bumper is being pushed (Packet
ID: 7).

21

In a ramp velocity profile, the velocity of the AGV gradually increases with a
constant rate until it attains the maximum velocity, then it travels with this
“peak” velocity for certain interval of time, after which the velocity of the
system again decreases at the same constant rate until the AGV comes to rest.
As there is no such sudden change in the velocity of the AGV, it is less affected
by inertia due to which it has less chance of spilling the fluid from the vessel. It
also moves more accurately to the destination. Thus, a ramp velocity profile
was chosen over a rectangular velocity profile for the movement of the AGV.

3.6.1 Conversion of rectangular velocity profile to ramp velocity profile

The routing module provides the rectangular velocity profiles of the AGVs.
Converting the rectangular velocity profiles to ramp velocity profiles leads to
lower errors during movements.

Figure 9: Ramp and rectangular velocity profiles

In order to convert the rectangular profile into a ramp profile, a maximum
velocity of 200mm/s is considered. A previous investigation showed if the
robot moves with a velocity higher than 200mm/s, then the risk of spilling the
fluid from the vessel is present. The following procedure is suggested.

1. Calculate the total ramp time (t1) of the ramp velocity profile.

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡1) =
(max𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑣𝑣𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

22

2. Calculate the next velocity for the next time slot considering an interval
time of 100ms. A ramp time of 100ms is assumed for simplicity such that
the ramp velocity profile can be calculated

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦 =
max 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

3. Calculate the time interval for which the robot moves with the maximum
velocity.

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 2 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

4. Increase the velocity of the robot by calculated ramp velocity at every
ramp time until it reaches the maximum.

5. Move with the maximum velocity for the calculated time.
6. Decrease the velocity of the robot by the calculated ramp velocity at

every 100ms until the robot stops.

The procedure results in a ramp velocity profile for moving equal amount of
distance in the same interval of time.

3.6.2 Results and Conclusion

The explained procedure has been tested by moving the robot with a specific
velocity for a specific interval of time as shown in the table below. For this
experiment, the robot is moved with the constant velocity for certain interval
of time. The travelled distance by the AGV is then recorded. After that, the
error is calculated using the rectangular profile. The same experiment is
performed, this time with ramp velocity profile also recording the
measurements. After performing the experiments and calculating the error,
the data are compared and it is observed that the final accuracy of the robot is
improved when using ramp profiles. The observed distances for both the
velocity profiles are listed below.

Sample Velocity(mm/s) Time(s) Distance
Travelled(mm)

Estimated
Distance(mm)

Error (%)

23

1 50 10 501 500 0.2
2 100 10 1003 1000 0.3
3 150 10 1480 1500 1.3
4 190 10 1843 1900 3

Table 3: Robot moving with ramp velocity for 10 second

Sample Velocity(mm/s) Time(s) Distance
Travelled(mm)

Estimated
Distance(mm)

Error (%)

1 50 10 504 500 0.8
2 100 10 980 1000 2
3 150 10 1440 1500 4
4 190 10 1780 1900 6.3

Table 4: Robot moving with different rectangular velocity for 10 second

As mentioned, the ramp velocity profile shows improvement. But despite
being the better one, we are not able to use this profile in the existing plant. As
mentioned earlier, the rotation of the robot is considered to happen
instantaneously. This means the robot has to take zero time for performing the
rotation which is possible when the plant is paused while rotation takes place.
Thus, the moving robot stops suddenly if any one of the robots needs to
rotate. After rotation of the robot is finished this moving robot will resume its
motion but this time it will start to move with the same velocity instantly at
which it was paused just before the rotation of other robot takes place. Thus,
the velocity profile acts as rectangular profile at this point. This leads to
violation of the ramp velocity profile.

Figure 10: Example to illustrate the violation of ramp velocity profile

24

In addition to this, there is another problem concerning the speed limit of the
robot. If the constant velocity provided by the routing module is more than
200mm/s then the maximum attainable velocity for the ramp profile should be
beyond 200mm/s. This leads to violation of our assumption.

If the robot moves with very low speed and the time interval for the
movement is low, then in some cases it is unable to attain the top speed of
200mm/s as the maximum velocity for ramp profile. Even if it is possible the
ramp velocity will be so high that it would actually behave like constant
velocity profile. To avoid this problem, the maximum attainable velocity for the
ramp profile is reduced until the desirable result is achieved. The minimum
value is set to maximum attainable velocity for ramp profile as 25mm/s.

25

4. Controller module
Seyedali Baradaranbirjandi

4.1 Robot kinematics

Kinematics is the science of studying motions of bodies regardless of the forces
or moments that cause the motion. Choosing the proper formulation of
kinematics model for a robot or a manipulator is vital. Basically there are two
different spaces used in kinematics modeling, Cartesian space and Quaternion
space [10]. According to the purpose of modeling and the type of motion, one
will decide to select the proper space. It is more convenient to represent the
kinematic model of AGVs in Cartesian space, though. In addition forces and
constraints of each wheel in two-wheeled mobile robots must be shown with
respect to a clear reference frame. This is important in mobile robots because
a clear relation between the moving and fixed parts of this particular plant is
required [10]. The position/state of a two-wheeled robot in Cartesian
coordinate system can be represented by 3 variables, namely x, y and θ. Figure
7 shows the position of an AGV.

Figure 11: position representation of an AGV

According to the position representation, the kinematic model of a two-
wheeled mobile robot can be described by the following equation:

26

�
𝑥̇
𝑦̇
𝜃̇
� = �

𝑐𝑐𝑐 (𝜃) 0
𝑠𝑠𝑠 (𝜃) 0

0 1
� �𝑣𝜔� (4.1)

Where v is the linear velocity and ω is the angular velocity of the robot.

4.2 Controller

As it was discussed in the introduction, there are different strategies for
wheeled mobile robot locomotion. The goal is to drive each AGV to a specified
desired position. Nevertheless, there are some assumptions about the robots
and the plant.

4.3.1.1. It is assumed that the robot moves only in one direction. In other
words, there is no backward motion. Thus the distance between current
position and destination is always positive.

4.3.1.2. The route of each AGV is provided by the routing module which
was explained in section 3.
4.3.1.3. Each AGV moves with a command which it receives from the main
control routine.

Problem description: As it is mentioned in Chapter 3, the route is determined
by a higher level function. The path includes some intermediate points. These
intermediate points are passed to the controller sequentially. In other words,
each intermediate point is a reference for the controller, until the robot
reaches the next intermediate point. According to the reference the controller
determines the angular and linear velocity of the robot, computes each
wheel’s velocity and sends the proper command to the robot. Thus the
problem is to find each wheel’s angular velocity according to the current
position of the robot and coordination of the next intermediate point.

27

Figure 12: shows the AGV route and respective intermediate points

The control methods examined for AGVs in this project are categorized into 2
groups:

4.3.2.1. Open loop control

Figure 13: open loop control block diagram

Consider a free body which intends to move linearly from point A to point B.
There are two factors that determine the quality of the motion, namely time
and velocity. Regardless of the distance between A and B, if one says that this
body must reach the destination in 5 seconds for example, then the velocity is
calculated accordingly and given to the body. On the other hand velocity can
be kept constant instead. Let us say that the body has to move with velocity 5
m/s. Accordingly the time of motion between A and B will be the division of
distance over velocity. With this brief explanation, the strategy used in open
loop control will be clear. In this approach either velocity or time need to be
kept constant and accordingly the other one is calculated. Strictly speaking, it
can be said that the robot has to reach the destination with a constant speed.

28

Thus the time will vary for different destinations. However, it is possible to
keep the time constant. As a result, velocity will change for different
destinations. The time is considered constant in this project, though. tfixed,1 and
tfixed,2 are the time for linear and angular motion respectively. These
parameters are chosen 10 seconds in this project. This means that no matter if
robot intends to rotate 10 degrees or 350 degrees, the rotation will last 10
seconds. However, the velocity of rotation for 10 and 350 degrees will be
different. A similar example for linear motion can be cited as well.

Two strategies were deployed for open loop control:

a) Linear and angular velocities are fed to the robot separately.

The motion of the robot between 2 intermediate points is divided into 3
phases:
1. Rotate toward the next intermediate point. As it is mentioned above, it
is considered that the time is constant (instead of velocity), angular
velocity of the robot and each wheel’s velocity have to be calculated.

𝛥𝛥 = 𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (4.2)

𝜔 = 𝛥𝛥
𝑡𝑓𝑓𝑓𝑓𝑓,1

 (4.3)

𝜔𝐿 = 𝜔×𝐿
2𝑅

 (4.4)

𝜔𝑅 = −𝜔𝐿 = − 𝜔×𝐿
2𝑅

 (4.5)

𝑉 = 0 (4.6)

where tfixed,1 is the fixed time of rotation,
ωL and ωR are the left and right wheels’ angular velocity, respectively,
L is the distance between the two wheels and R is the radius of each
wheel.

2. Translate toward the destination.

𝜌 = �(𝑋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑋)2 + (𝑌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑌)2 (4.7)

29

𝑉 = 𝜌
𝑡𝑓𝑓𝑓𝑓𝑓,2

 (4.8)

𝜔𝑅 = 𝜔𝐿 = 𝑉
𝑅

 (4.9)

where ρ is the distance between the current AGV position and the
destination and tfixed,2 is the fixed time of linear translation.
tfixed,1 as well as tfixed,2 are chosen arbitrarily.

3. Rotate to the desired angle. This phase is executed when the robot
reaches the final intermediate point (final destination). The procedure is
the same as the first phase.

b) Linear and angular velocities are fed to the robot simultaneously.

Given that the position and rotation of current and next intermediate
points of an AGV are known, the path between these 2 intermediate
points can be described with an arc of a circle. Accordingly the problem
will be to determine the center of this circle.

Figure 14: the curved path between two intermediate points

Since the time of the motion is considered to be fixed, once the center of
this circle is calculated, linear and angular velocities of the robot can be
determined. It is assumed that V and ω are constant along the path. The
angular velocity of each wheel is computed by the following formulas:

𝜔𝑅 = (2×𝑉+ 𝜔×𝐿)
2𝑅

 (4.10)

𝜔𝐿 = (2×𝑉− 𝜔×𝐿)
2𝑅

 (4.11)

30

However this approach has a lot of drawbacks one of which is neglect of
obstacles on the arc of the circle. The routing module which is responsible
for determining the intermediate points and avoiding obstacles, assumes
that AGV moves straight between the intermediate points. Therefore in
this curved path there may be an obstacle which was not expected by the
upper level.

For both the above-mentioned approaches, it is considered that the time is a
reference for the AGV’s motion. When time reaches the desired value, the
current motion/phase (rotation or translation phase) needs to be stopped.

4.3.2.2. Closed loop control:

Figure 15: closed-loop system

The difference between open and closed loop control is that the error between
the desired and the current position is taken into account, in order to
determine the velocity of an AGV in closed loop system. A P controller is
employed in this project. (Equations 4.13 and 4.16). In other words, the
angular and linear velocities of an AGV are proportional to the size of the error.
Bigger error results into bigger velocity.

There are two ways to measure the current position of the robots: Using the
encoders of the robot’s motors or using the data from the camera installed
above the plant. Since the encoders in rotation phase are not accurate enough,
it was decided to use the camera information to locate the AGV. This data is
compared with the reference value and the error is obtained accordingly. The
motion of the robot is again divided into 3 phases. In each phase the AGV is
either fed with angular or linear velocity. Consequently there will be two gains,
one for rotation and one for translation.

31

In the rotation phase the rotational error is,

𝛥𝛥 = 𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , (4.12)

𝜔 = 𝑃1 × 𝛥𝛥 , (4.13)

𝜔𝑅 = −𝜔𝐿 = − 𝜔×𝐿
2𝑅

 (4.14)

where P1 is the rotation gain. The value for rotation gain is 4x10-4 which is
chosen empirically for this project.

And for the translation phase, the translational error is,

𝜌 = �(𝑋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑋)2 + (𝑌𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑌)2 (4.15)

𝑉 = 𝑃2 × 𝜌 (4.16)

𝜔𝑅 = 𝜔𝐿 = 𝑉
𝑅

 (4.17)

where P2 is the translation gain. The value for rotation gain is 15x10-3 which is
also chosen empirically for this project.

Due to the sensor limitations and the robot’s inaccuracies, the error will not
become exactly 0. Thus there will be some acceptable margins of error for
each phase. Once the error is less than a specified threshold (2 degrees for
rotation and 7 cm for translation), the phase will change and the AGV will
enter the next stage.

4.3 Conclusion

Even though the open loop control system is remarkably simple to implement,
it has many disadvantages. The environment of the robot, specifically the field
in that the robot moves, is not fully known. If there are uneven ground
conditions for example, the robot will end up not of course in the desired
destination. Therefore it is more reasonable to control the robot in a closed
loop system. As a result, in the presence of disturbance such as uneven ground
condition or bad calibrated wheels, the robot can still converge to the desired

32

destination. However, maintaining the stability of an AGV in a closed-loop
system is vital. To exemplify the importance of stability, consider a situation in
which the robot is considerably far away from its destination. The translational
error and the linear velocity will become big respectively. Conversely the
velocity of wheels cannot increase arbitrarily. Thus there need to be a
threshold for the maximum speed of the wheels in order to maintain the
stability of the robot.

33

5. Image Processing and Localization
Mauricio Martinez Severich

5.1 Camera vision

One element in the current project is a fisheye camera positioned above the
plant. The camera is from IDS (Imaging Developing System GmbH). The image
acquired using this camera covers all the plant, and will be used to calculate
the necessary feedback - the location information (position and orientation) of
the robots – to the controller.

Figure 16: Plant seen by fisheye camera

Using the current system, there are two main issues regarding the camera
vision system.

• The image processing time.

• Dewarping the image and transforming from the pixel coordinate system
(𝑢, 𝑣) to the world coordinate system (𝑥, 𝑦).

5.2 Image Processing

During an earlier group project, an image processing algorithm was
implemented. According to the project report, the image processing time was
250ms (from camera capture until calculating the pose information in the

34

World coordinate system) [1].In order to improve the image processing time, a
new algorithm is implemented in this project.

5.2.1 Introduction

The current project is developed in C# platform with WPF (Windows
Presentation Foundation) format, image processing tools will be necessary to
include to the project solution.

OpenCV was designed for computational efficiency with a strong focus on real-
time applications. It contains library that can take advantage of multi-core
processing [2].

Emgu is a cross platform, that allows OpenCV functions to be called from .NET
compatible languages such as C#, VB, VC++, etc.[3].

The procedure to develop the image processing algorithm will be explained in
the following sections. It follows the idea, to capture the image, segment the
image, cluster the segmented tokens according to the number of robots
present on the image and finally calculate the position and orientation.

5.2.2 Segmentation

The PCBs with different LED configurations that were designed in the previous
report [1] are plugged onto the robots. These LEDs will be the points of
interest for the segmentation.

Figure 17 : Right image: Robot with the PCB. Left Image:

segmentation of the LED

An appropriate threshold has to be selected to obtain a segmented image.
Since the points of interest for the algorithm is the brightness of the LEDs, a
non-linear colour space called HSV (hue, saturation, value) will be used.

35

Hue: is the property of a color that varies in passing from red to green.
Saturation: is the property of the color that varies in passing from red to pink.
Brightness (sometimes called lightness or value): is the property that varies in
passing from black to white [4].

To improve the segmentation, the algorithm blurs the image using a Smooth
Gaussian Filter and then applies again a threshold in the grayscale space. This
improvement is necessary to approximate the segmented region of interest to
circles. It later compares the image using the Hough Circles detector algorithm,
concluding with the information of the circles detected in the image
coordinate system(𝑢,𝑣).

a) Original b) First threshold c) Smooth

Gaussian
Filter

d) Final
Threshold

Figure 18 : Segmentation steps

5.2.3 Clustering

The clustering algorithm needs an input of the current number of Robots
present on the image. This can be solved by applying a threshold of the
number of tokens (detected LEDs) in the image.

The algorithm to be used for clustering is the K-means clustering [5]. The
procedure is the following:

1. Choose a fixed k number of cluster (Number of Robots).
2. Select k random tokens as initial cluster centers.
3. Assign tokens to the nearest cluster center using the Euclidean distance

criteria.
4. Compute the centroid as the mean of all the tokens belonging to the

cluster.
5. Repeat until there is no change in the number of clusters.

36

Figure 19: k means clustering

The result of the algorithm is shown in the following figure. Note that the
Robots are distinguished by the color of the point of interest.

Figure 20 : Clustering of 4 different LEDs Configuration
5.2.4 Position and orientation

Now that all the tokens are clustered, each cluster can be analyzed in terms of
position and orientation.

Figure 18 illustrates the LEDs configuration of the Robots, this configuration is
arranged in a way to identify the Robot, localize the position and calculate the
orientation. This configuration was designed in the previous Project
implementation [1].

37

Figure 21: Identity markers of Robot I, II, III and IV

In order to find the apex of each Robot, the following procedure is applied:

1. Select randomly 3 tokens.
2. Check if the tokens do not belong to a line, using triangle areas criteria. If

yes proceed with step 3 otherwise repeat step 1.
Use the Heron Formula to obtain the area of the triangle.

 𝐴𝐴𝐴𝐴 = �𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) (5.1)

Where:

 𝑠 =
𝑎 + 𝑏 + 𝑐

2
(5.2)

𝑎, 𝑏, 𝑐 𝑎𝑎𝑎 𝑡ℎ𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠

To verify whether the tokens belong to a line, the area is compared to a
threshold.

38

Figure 22 : Determine the main triangle

3. Find the Apex in the triangle using Euclidean distance criteria with the
vertices.

Figure 23: Find the apex

Now that the main triangle has been detected, we calculate the midpoint and
the orientation using the following formula.

 𝑝12������⃗ = �
𝑢1 + 𝑢2

2 ,
𝑣1 + 𝑣2

2 � (5.3)

where:

 𝑝1����⃗ = (𝑢1,𝑣1); 𝑝2����⃗ = (𝑢2,𝑣2)𝑝1����⃗ ,𝑝2����⃗ ⋲ 𝑃 (5.4)

Figure 24: Orientation and midpoint

39

A simple way to identify the Robot is by the number of detected LEDs. This
method leads to a problem with the Robot II and Robot III. To solve this issue,
the cross product of the two vectors p3 and p12 is calculated: 𝑝3����⃗ × 𝑝12������⃗ =
(u3v12) − (v3u12)

Figure 25: Vectors for the cross product

The result of the cross product for Robot II will be positive and for Robot III will
be negative.

5.3 Camera Calibration and Mapping
Shehabeldin Abdelgawad

As previously discussed in chapter 2, the encoders on the AGVs do not provide
sufficient accuracy for rotation, they are also prone to errors that accumulate
and needs to be corrected by a world reference frame from time to time
regardless of their accuracy. Therefore the use of camera feedback is
necessary for the correction of the accumulated errors of the encoders and for
all rotation movements of the AGVs.

5.3.1 Advantages of using fisheye lenses

Fisheye lenses have a wide view angel this makes it possible to capture the
entire plant from a relatively low height. The camera is fixed such that it
obtains a top view of the plant. The fixation and captured image can be seen
from Figure 1and Figure 13respectively.

5.3.2 Disadvantages of using fisheye lenses

Fisheye lenses introduce heavy distortion which can easily be seen from Figure
13, if one looks to the edges of the plant which should appear to be straight, in
the image appear to be curved. This is caused mainly by the radial and

40

tangential distortion introduced by the fisheye lens. Fisheye lenses suffer
mainly from radial distortion and mildly from tangential distortion. As we move
away from the center of the image, the radius and consequently the amount of
radial distortion increase. The optical center of the image is where the radius is
considered to be zero.

5.4 Factors affecting the reliability of the camera feedback

The plant is present within an environment whose lighting conditions are
affected by the sun. This causes changes to the light intensity falling on the
plant and thus being reflected to the sensor. This causes problems with the
segmentation process which depends partly on the intensity values for
segmentation.

Another factor that decreases the reliability of the camera feedback is the
noise created by bright or highly reflective objects on the plant such as metal
bolts, Xbee LEDs and reflections on the clear acrylic fixed to the sides of the
stations. The last factor influencing the reliability of the camera feedback
negatively is the saturation caused by the high light intensity of the LEDs.

All these factors affect the segmentation process which in turn affects the
clustering process leading to inaccurate results, since the robots are not
correctly identified. These factors are introduced through the design and
location of the plant, and can be seen in Figure 23.

Figure 26: Noise due to reflections

41

5.4.1 Solution to improve reliability of camera feedback

The previous factors affecting the reliability of camera feedback are all caused
by the high light intensity in the same HSV range as the LEDs used to detect the
robots. The reliability can be improved by reducing the exposure time of the
camera sensor to the plant when taking images or by reducing the aperture
size of the camera, both methods result in the sensor being exposed to lower
light intensity values. This mainly reduces the noise introduced by changing
light conditions and helps with metallic and glossy reflections on the plant. The
Xbee LEDs have been coved from the top to prevent the camera from
detecting them as they are also of the same color of the LEDs used to define to
robots. An example image is show in Figure 24.

Figure 27: Image after aperture size reduction

5.5 Problems associated with distortion introduced by the Fisheye lens

Due to the Tangential and Radial Distortion introduced by the fisheye lens, the
mapping from Plant coordinates to World coordinates becomes nonlinear. This
results in different pixel areas for a constant plant area, due to the stretching
effect introduced by the lenses’ distortion. The difference depends on the
location of the detected area in the image. One can see a “stretch” effect in
figure27, which increases with radial distance from the optical center. This
change in the area due to distortion makes the detection of the apex difficult
as the detection of the apex depends on the area of the detected triangles in
the images. Without distortion correction which requires calibration, the areas

42

of the triangles vary along the plant significantly and the control of the AGVs in
plant coordinates using camera feedback would become inaccurate.

5.5.1 Compensating distortion introduced by the Fisheye lens

As previously discussed, Fisheye lenses introduce heavy distortions which must
be compensated to provide adequate localization accuracy for feedback
control.

Calibration is the mapping of a device’s output to a set of reference values
such that a measurement of the output of the device can be
mapped/converted to a meaningful value in some reference.

In the current project context the camera pixels are referred to as (u, v). These
coordinates must be mapped to the plant coordinates (x, y, z).However, since
the plant is a plane we only consider (x, y). This is achieved by using calibration
images, Images which have an easy to detect set of points in both world/plant
and pixel coordinates, which correspond to one another. This was done using a
checkerboard pattern. The calibration process uses the following functions
from OpenCV: FindChessboardCorners, CalibrateCamera and InitUndistortMap.

A sample image before and after the detection can be seen in Figure
25andFigure 26.

43

Figure 28: Before detection

Figure 29: After detection

44

The sequence for the camera calibration is as follows:

• Images with the checkerboard pattern in a known position relative to
the plant’s coordinate system are taken.

• The images are passed to the calibration class in the main program,
which dose the following.

o The plant coordinates of the upper left corner of the pattern are
passed to the calibration class.

o The corners of the checkerboard pattern in the images are
detected and mapped to the corresponding plant coordinates.

o The calibration algorithm (OpenCV) runs to determine the intrinsic
and extrinsic camera parameters using the corresponding sets.

o The camera parameters are used to create a map which is saved
for the current program run and is used to dewarp the images
later obtained during operation of the plant also known as
distortion compensation.

The camera calibration process is formulated as an optimization problem to
minimize the root mean square error between the projected world coordinates
to the sensor coordinates and the given sensor coordinates.

Each calibration image gives 165 points, since the checkerboard pattern is
uniform, the locations of the corners can be easily computed if one knows the
location of one corner on the board relative to the plant’s coordinate system.
In this work it was picked to be the top left corner.

Camera parameters are classified as either intrinsic parameters or extrinsic
parameters.

Intrinsic parameters which are independent of the scene being viewed are also
known as camera constants e.g.

• Focal length
• Pixels per mm (sensor)
• Distortion parameters
• Image center

45

Extrinsic parameters are dependent on the scene

• Rotational Matrix
• Translation between coordinate systems

5.6 Mathematical Background

The compact equation governing the transformation from world to pixel
coordinates is as follows:

 𝑠 𝑚′ = 𝐴[𝑅|𝑡]𝑀′ (5.5)

Where ‘s’ is the scaling, ‘m’ are the pixel coordinates, ‘A’ is the matrix of
intrinsic camera parameters, ‘R|t’ is the rotational | translational matrix and
‘M’is the world coordinate to be transformed.

The Detailed equation for transforming from world to pixel coordinates is as
follows:

𝑠 �
𝑢
𝑣
1
� = �

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

� �
𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

� �

𝑋
𝑌
𝑍
1

� (5.6)

fxand fyare the focal lengths expressed in pixel units, cx and cy is the principal
point at the image center, u and v are the coordinates of the projection point
in pixels and rxx and tx are the Rotational elements and translational elements
respectively.

If no distortion is present, the rotation and translation would be expressed as
follows with the division of z to return from the projective geometry's space.

�
𝑥
𝑦
𝑥
� = 𝑅 �

𝑋
𝑌
𝑍
� + 𝑡

𝑥′ =
𝑥
𝑧

𝑦′ =
𝑦
𝑧

46

𝑢 = 𝑓𝑥 ∗ 𝑥′ + 𝑐𝑥

 𝑣 = 𝑓𝑦 ∗ 𝑦′ + 𝑐𝑦 (5.7)

If distortion is present the transformation would be extended as follows:

�
𝑥
𝑦
𝑥
� = 𝑅 �

𝑋
𝑌
𝑍
� + 𝑡

𝑥′ =
𝑥
𝑧

𝑦′ =
𝑦
𝑧

𝑥′′ = 𝑥′
1 + 𝑘1 𝑟2 + 𝑘2 𝑟4 + 𝑘3 𝑟6

1 + 𝑘4 𝑟2 + 𝑘5 𝑟4 + 𝑘6 𝑟6
+ 2𝑝1 𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2) + 𝑠1𝑟2 + 𝑠2𝑟4

𝑦′′ = 𝑦′
1 + 𝑘1 𝑟2 + 𝑘2 𝑟4 + 𝑘3 𝑟6

1 + 𝑘4 𝑟2 + 𝑘5 𝑟4 + 𝑘6 𝑟6
+ 2𝑝2 𝑥′𝑦′ + 𝑝1(𝑟2 + 2𝑦′2) + 𝑠1𝑟2 + 𝑠2𝑟4

𝑢 = 𝑓𝑥 ∗ 𝑥′′ + 𝑐𝑥

 𝑣 = 𝑓𝑦 ∗ 𝑦′′ + 𝑐𝑦 (5.8)

Where kx are the radial distortion coefficients, px are the tangential distortion
coefficients and sx are the prism distortion coefficients.

The introduction of the distortion coefficients results in the intrinsic camera
parameters entering the R|t matrix i.e. the matrix of extrinsic parameters. The
resulting optimization problem is therefore nonlinear.

The Optimization parameters include the A matrix, the R|t matrix and the
distortion parameters:(𝑘1,𝑘2,𝑝1,𝑝2,𝑘3,𝑘4,𝑘5,𝑘6, 𝑠1, 𝑠2, 𝑠3, 𝑠4).

5.7 Results after Calibration

Below are the images before and after the distortion correction. On the left is
the image before correction and on the right after the correction has taken
place. See Figure 27.

47

Figure 30: Before and after distortion correction

5.8 Localization using the camera after calibration

In general when obtaining images from a fixed point, the depth information is
lost. Since we have a top view of the plant plane, the entire plant plane can be
set to have Z=0 in the world coordinate system with respect to the camera.
This is equivalent to removing the 3rd column of the R|t matrix making it
square and invertible; Since R|t is of full rank. See equation5.5.

The final output is a reliable method of optically localizing the robots using the
fish eye camera. The camera is currently the only feedback used for controlling
the AGVs position.

5.9 Image processing and localization performance

• Average time required to run Image processing = 15ms

• Average time required to read Image from Camera = 100ms

• Average complete completion time = 115ms

• RMS error of mapping is 0.65 pixels

• Average angle noise ± 2 degrees

48

6. Battery exchange
Lusan Maharjan

The main goal of this task is to ensure that each AGV has enough battery level
moving throughout the plant from the beginning to the end of the execution of
the schedule and whenever one of the AGVs is running out of battery it will be
exchanged with a fully charged one. The plant is operated on a time based
system. All the AGVs should move according to the time based velocity profiles
which are generated by the routing module. This means the robots are
assumed to be at a specific place at a specific time. They should strictly follow
the route provided by the routing module. If the AGV is out of battery, it stops
and does not move anymore. . To avoid this problem the main control module
replaces the low battery AGV with a full charged one before the AGV turns off.

For this procedure, the battery level of each AGV in the plant should be
scanned. As soon as an AGV is detected with low battery level, some
requirements for exchanging the AGV should be fulfilled. After the battery
exchange requirements are fulfilled, the exchange process is performed.

6.1 Requirements for exchanging the AGVs
• The AGV with low battery should be either at its initial position or

located at the storage station.
• If the AGV is at storage station, it must not carry any vessel.
• Filling or mixing process should not be in progress in any of the AGVs.

6.2 Getting the battery level

Awjoykanti Bonik

The voltage and the battery level can be checked by reading the sensors, as it
was mentioned in chapter 2. There are different types of packet IDs for reading
the battery properties. For example, the packet ID 21 is used to read the
charging status, the packet ID 22 is used to read the voltage level, the packet
ID 23 is used to read the electric current and packet ID 25 is used to read the
battery level. Each robot is updating their voltage and charge level and they
could be identified by meaning of their IP address; as mentioned in chapter 2,
the updating time depends on the opcode we choose (opcode 148 every 15ms

49

or opcode 142 every certain chosen time or any other event). Therefore, the
voltage level and battery charge level of each robot can be known.

Packet ID 22: Battery voltage level given in millivolts (mV). The voltage level
decreases while the battery is depleting and increases while the battery is
charging.

Packet ID 25: Battery charge level given in milliamp-hours (mAh). The charge
value decreases when the battery is depleting and increases when the battery
is charging.

Battery specification: 14.4 V (14400 mV) and 3.5 Ah (3500 mAh).

After the implementation of the microcontroller code, the voltages and battery
charge levels are available on the screen.

Figure 31: Battery level information

6.3 Implementation

Lusan Maharjan

During the normal operation of the plant, the battery levels of the operated
robots are detected and the threshold level for the low battery notification
(e.g. 30% of the full charge) is set, such that if the battery level of the operating
robot is below the threshold level, the robot exchange function is called. The
procedure for robot exchange is the following:

1. Make sure that the AGV with the low battery is not carrying a vessel. If the
AGV is carrying a vessel then it should continue the operation until the

50

vessel has been released. This means that the exchange of the robots can
only happen when the robot with low battery is, either at its initial
positions or located at the storage station releasing the vessel for the
hardening step. Also, check whether filling or mixing process is in progress.
If the condition is true, wait for it to finish, then pause the operation of the
plant.

2. Save the current state of the schedule i.e. the time at which the last task
was executed and the corresponding task ID.

3. Using the camera, determine the positions of all the other AGVs.
Considering these positions as obstacles, calculate the new path for
exchanging AGVs using A* grid.

4. Using the A* class and the recently calculated grid, calculate two different
paths for exchanging the robot with low battery level, with the AGV with
fully charged battery at one of the charging stations. There are two
charging stations, one charge station consists of full battery AGV and
another is vacant. After the completion of the robot exchange, the vacant
charged station will be occupied by low battery robot whereas another
charged station will be empty.

5. Use feed forward control to drive the robots through the calculated paths
and then use controller for the correction at the end.

6. Once the exchange of the robots is complete, send a notification to the
main control routine, so that it can continue with the schedule.

6.4 Assumptions

• Fully charge battery always has fixed ID and it is located at one of the
charge station.

• If an AVG is just in the storage, it does not carry any vessel. The AGVs in
the other station carry vessels. Thus the low battery AGV can be
exchanged only if it is in the storage.

• The exchange happens at the end of each group.

By taking these assumptions into account, it can be assured that all the
requirements for the battery exchange are fulfilled if an AGV with low battery
level is detected at the storage or at its initial position. This is because an AGV
does not contain any vessel when it is at storage and the plant is in idle state

51

after the end of each group. Thus, there is no possibility of filling and mixing
carried on other stations. This will be discusses in more detail while
implementing it in the following section.

6.4.1 Implementation according to the assumptions

As mentioned earlier, the AGVs are going to be exchanged only if low battery
level is detected in one of the AGVs and that the AGV is inside the storage at
the end of each group. This means that the battery level of the AGV needs to
be checked when it is inside the storage at the end of each group. The
implementation will be done as follows:

1. Wait until the current group ends. Here, the group refers to
collection of the movements of various AGVs for specific task. The
combination of this entire group gives the complete operation of
the plant.

2. Check whether the AGV is inside the storage station or not. If yes,
check the battery level of the AGV.

3. If the battery level of the AGV is less than 30% of the full battery
level, then perform an exchange of the AVGs. The steps involved
in the movement of the AGVs during exchange will be described
later.

4. Change the ID of the newly exchanged AGV with the ID of the AGV
with the low battery level. This means that the fully charged AGV
ID will be equivalent to the low battery AGV ID.

The steps involved in the movement of the AGVs during exchange are listed
below.

1. Determine the current location of the robots (position and orientation)
2. Determine two collision free paths using A*,

a. One from the current location of the low battery robot to the
empty charge station

b. Another from the location of the fully charged robot at the charge
station to the current position of the low battery robot

3. Update the next intermediate positions as the temporary end points
4. Calculate the angle difference between the current point and the next

point and then turn the robot for desired rotation

52

5. Calculate the distance and then calculate the velocity and move for an
specific time(time can be set manually by user)

6. Update the new intermediate position as end point and repeat these
process until it updates last point as its end point

7. Uses controller for correction

6.5 Result and Conclusions

During the normal operation of the plant, the low battery AGV was detected at
the storage station without carrying any vessel. Initially, the full battery AGV
was placed at charge station 1 and charge station 2 was empty. After that, the
remaining two operating AGVs in the plant were detected and their positions
were marked. The plant is currently in the idle state as it is in the end of one of
the group. This means that there is no filling, no mixing and no movement of
the AGV going around the plant at the moment. So, the schedule can be
paused at that moment. Thus, the AGV exchange is carried out as all the
requirements are fulfilled. The position of the low battery AGV is sent as the
source point, the location of the charging station 2 which is currently empty as
the destination and the positions of the two other robots as obstacles as the
input parameters for the A* and then A* generates the new path for moving
the AGV. Similarly, the position of the low battery AGV is sent as the
destination point, the location of the charging station 1 where an AGV with full
battery is supposed to be as the destination and the positions of the two other
robots as obstacles as the input parameters for A* and another path is
generated by. Then the AGV travels through all the points generated by the A*
simultaneously using the feed forward control (only for translation whereas it
still uses controller for rotation). Once the robot travels through all the points
generated by A*, then finally a feedback controller is applied for final
correction. This way, the battery exchange process is carried out between the
two AGVs. After this, the plant can resume the schedule again so as to
complete the remaining process.

6.6 Remark

A* calculates the path in centimeters which means that the list of intermediate
points provided by A* is in cm. But the camera parameters are calculated in
millimeters. Thus, a conversion of those intermediate points from A* is needed
multiplying by10 if we need to use these value with reference to camera
values. Similarly, the camera values should be divided by10 when calculating

53

the A* path. Thus, conversions from millimeter into centimeters and vice-versa
are needed.

54

7. Integration
Angel Garza, Mauricio Martinez, Shehabeldin Abdelgawad

7.1 Flowchart

To produce the final product, the main program which controls the operation
of the plant has to go through the following stages:

1. The user inputs the set of recipes to be produced.
2. The user specifies the AGVs available and the storage locations that are

free.
3. As previously discussed in chapter3, the scheduler module receives a list

of available AGVs, free storage locations and recipes. The scheduler then
assigns the recipes to the AGVs and schedules the operations of the
stations to produce the final products.

4. The router receives the output from the scheduler and finds collision
free paths for each group of movements, by producing a velocity profile
for each AGV, see chapter 3.

5. Start the execution phase.
6. Create the final products.
7. End of the execution.

The Execution phase iterates through the groups, each group’s iteration is
divided into 2 other phases, the “Feed-forward” and “Feedback” phases.

In the Feed-forward phase, the AGVs follow the velocity profiles in an open-
loop sense with respect to the plant. The robots receive the velocity values to
be followed from the main program on the PC. The velocity is regulated by a
built-in low level controller on the AGV. However, as previously discussed in
chapter 2, the encoders do not provide sufficient accuracy for the rotation and
the routing module assumes zero time for rotations, see chapter 3, therefore
all the feedback information which is required for checking the rotations are
taken from the camera feedback.

In the feedback phase, the AGVs are controlled using the camera feedback
through the control module. This is done iteratively until the desired pose is
achieved. A single iteration contains the following steps:

55

1. The camera captures an image.
2. The Image processing module extracts the position and orientations of

the AGVs in the plant coordinate system.
3. The controller receives the current pose of the AGVs from the Image

processing module and the desired pose from the routing module, and
then calculates the appropriate velocities for each AGV.

4. The controller sends velocity commands to the AGVs.

The execution of a single group of movements is illustrated by the flowchart
below:

Figure 32 Flow chart

56

The plant proceeds through the following steps for each group:

1. Undocking if needed for AGVs that will move in the current group
2. Initial correction using camera feedback to starting point of current

group
3. Use feed forward control for all AGVs of the group
4. For any rotation detected, stop all feed-forward and start control loop

using camera feedback to obtain required orientation
5. Continue feed-forward control which ensures collision free movements
6. At the end of the active group, run the controller to correct the final

pose of all AGVs in the current group
7. Dock

The use of feed-forward in conjunction with feedback ensures collision free
movements, the feed-forward avoids collisions via the A* algorithm but does
not account for rotation times or velocities associated with rotations. The
rotations are taken care of by the controller using camera feedback.

57

8. Conclusion and further work
Angel Garza, Mauricio Martinez, Shehabeldin Abdelgawad

The plant can currently run autonomously which is an improvement to the
plant’s functionality. A reliable controller module was developed and the
image processing algorithm was reworked, the current implementation
achieves faster and more reliable results. However, the required time for
execution is far from optimal, this is due to:

1. The routing module does not account for the time needed for AGV
rotations

2. The AGVs move following a path with the sequence rotation-translation-
rotation, paths and velocities are pre-calculated using this kind
implementation.

3. All the events are time based and not event based, this is not realistic or
safe and to decrease the chances of station mishaps a large amount of
wait time is introduced into the scheduler.

The plant can be improved by, removing the restriction on the AGVs with
regards to the rotation-translation-rotation movements and allowing curved
paths.

Another improvement would be the use of events to trigger station operation
(such as robot bumpers) instead of time based operation, thus giving more
flexibility to execute the schedule and manage errors. The execution should be
implemented in a separate thread to allow GUI updates. Implementation of an
algorithm that would generate a collision free path based on camera feedback
in conjunction with event based station operation, would remove the time
based constraint on the system.

58

9. References

[1] Group project report on “Advanced AGV Drive Control in a Pipeless Plant”,
TU Dortmund, 2013

[2] OpenCV Documentation, www.opencv.org

[3] Emgu Documentation, www.emgu.com

[4] “Computer Vision: A modern Approach”, by David A. Forsyth, Jean Ponce

[5] F. Hoffmann. “Computer Vision in Automation & Robotics” script, TU
Dortmund, 2014

[6] “Springer Handbook of Robotics” by Siciliano, Khatib

[7] R. Craig Coulter, “Implementation of the Pure Pursuit Path Tracking
Algorithm”, the Robotics Institute Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1992

[8] Michael O’Connor, Thomas Bell, Gabriel Elkaim, Dr. Bradford Parkinson,
“Automatic Steering of Farm Vehicles Using GPS”, Stanford University, 1996

[9] Junfeng Wu, Wanying Zhang, Shengda Wang, “A Two-Wheeled Self-
Balancing Robot with the Fuzzy PD Control Method”, College of Automation,
Harbin University of Science and Technology, China, 2012

[10] “Industrial Robotics: Theory, Modelling and Control, Chapter 4, Robot
Kinematics”, by S. Kucuk, Z. Bingul

[11] “Introduction to Autonomous Mobile Robots” by R. Siegwart, I. R.
Nourbakhsh

[12] Adam Finkelstein, “Kinematics & Dynamics” script, Princeton University,
2005

[13] L. Gracia, J. Tornero, “Kinematic Control of Wheeled Mobile Robots”, Latin
American applied research, v.38 n.1 Bahía Blanca ene. 2008

[14] Kurt, Tod E. “Haking Roomba”. Indianapolis, Indiana: Wiley Publishing, Inc.,
2007

http://www.opencv.org/
http://www.emgu.com/

59

[15] “iRobot Create Open Interface”. iRobot.
Web.<http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20
Interface_v2.pdf>

[16] Nazari, Shaghayegh. “High-Level Hierarchical Control of a Miniature
Pipeless Plant with Mobile Robots”. Master thesis, TU Dortmund 2013

	1. Introduction
	1.1 Motivation (why a pipeless plant)
	1.1.1 The miniature pipeless plant

	1.2 Plant module layout (previous implementation)
	1.3 Objective of the group project

	2. Hardware
	2.1 iRobot Create
	2.1.1 iRobot Create Open Interface

	2.2 Sensors
	2.2.1 Properties of the encoders
	2.2.2 Limitations of the encoders

	2.3 Modifications
	2.4 Testing control with encoder feedback (opcode 142)
	2.3
	2.4
	2.4.1 Results of linear movement of the AGVs with encoder feedback
	2.4.2 Results angular movement with encoders feedback

	2.5 Conclusion

	3. Routing Module
	3.1 Overview of operation
	3.2 Previous state of routing module
	3.3 Limitations of the current implementation
	3.4 Modifications to router module’s output
	3.5 Feed-Forward module’s principal of operation
	3.6 Improvement of AGV movements (Ramp Velocity Profile)
	3.6.1 Conversion of rectangular velocity profile to ramp velocity profile
	3
	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	3.6.1
	3.6.2 Results and Conclusion

	4. Controller module
	4.1 Robot kinematics
	4.2 Controller
	4.3 Conclusion

	5. Image Processing and Localization
	5.1 Camera vision
	5.2 Image Processing
	5.2.1 Introduction
	4
	5
	5.1
	5.1.1
	5.2.2 Segmentation
	5.2.3 Clustering
	5.2.4 Position and orientation

	5.3 Camera Calibration and Mapping
	5.3
	5.3.1 Advantages of using fisheye lenses
	5.3.2 Disadvantages of using fisheye lenses

	5.4 Factors affecting the reliability of the camera feedback
	5.2
	5.3
	5.4
	5.5
	5.5.1
	5.4
	5.4.1 Solution to improve reliability of camera feedback

	5.5 Problems associated with distortion introduced by the Fisheye lens
	5.5.1 Compensating distortion introduced by the Fisheye lens

	5.6 Mathematical Background
	5.7 Results after Calibration
	5.8 Localization using the camera after calibration
	5.9 Image processing and localization performance

	6. Battery exchange
	6.1 Requirements for exchanging the AGVs
	6.2 Getting the battery level
	6.3 Implementation
	3
	4
	5
	6
	6.4 Assumptions
	6
	6.1
	6.2
	6.3
	6.4
	6.4.1 Implementation according to the assumptions

	6.5 Result and Conclusions
	6.6 Remark

	7. Integration
	7.
	7.1 Flowchart

	8. Conclusion and further work
	9. References

