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• generate a graph representation of the planning problem

• search the graph for a solution 

• can interleave the construction of the representation with the search (i.e., construct only 

what is necessary)

What is Search-based Planning

Carnegie Mellon University

motion primitives

construct

the graph:

search the graph

for solution:

lattice-based graph representation for 3D (x,y,θ) planning:

discretize:

construct

the graph:

search the graph

for solution:

2D grid-based graph representation for 2D (x,y) search-based planning:
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• http://www.ros.org/wiki/sbpl

• SBPL is: 
- a library of domain-independent graph searches

- a library of environments (planning problems) that represent the problems as graph search 

problems

- designed to be so that the same graph searches can be used to solve a variety of 

environments (graph searches and environments are independent of each other)

- a standalone library that can be used with or without ROS and under linux or windows

Search-based Planning Library (SBPL)

Carnegie Mellon University

Domain-independent 
graph search 

Environment  defining 
the planning problem 

as a graph
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• http://www.ros.org/wiki/sbpl

• SBPL can be used to:
- implement particular planning modules such as x,y,θ planning and arm motion planning 

modules within ROS

- design and drop-in new environments (planning problems) that represent the problem as a 

graph search and can therefore use existing graph searches to solve them

- design and drop-in new graph searches and test their performance on existing 

environments

Search-based Planning Library (SBPL)

Carnegie Mellon University

Domain-independent 
graph search 

Environment  defining 
the planning problem 

as a graph

Planning module

- receives map, pose and goal updates 

- updates environment (graph)

- calls graph search to re-plan 
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• Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (hybrid between deterministic searches and sampling-

based planning)

• Currently implemented environments (planning problems) within SBPL:
- 2D (x,y) grid-based planning problem

- 3D (x,y,θ) lattice-based planning problem

- 3D (x,y,θ) lattice-based planning problem with 3D (x,y,z) collision checking

- N-DOF planar robot arm planning problem

• ROS packages that use SBPL:
- SBPL lattice global planner for (x,y,θ) planning for navigation

- SBPL cart planner for PR2 navigating with a cart

- SBPL motion planner for PR2 arm motions

- default move_base invokes SBPL lattice global planner as part of escape behavior

• Unreleased ROS packages and other planning modules that use SBPL:

- SBPL door planning module for PR2 opening and moving through doors

- SBPL planning module for navigating in dynamic environments

- 4D planning module for aerial vehicles (x,y,z,θ) 

… 

Search-based Planning Library (SBPL)

Carnegie Mellon University
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University
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• Problems with (very popular) pure grid-based planning

Lattice-based Graphs for Navigation

Carnegie Mellon University

discretize:

construct

the graph:

search the graph

for solution:

2D grid-based graph representation for 2D (x,y) search-based planning:

sharp turns do not incorporate 

the kinodynamics constraints of the robot 
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• Problems with (very popular) pure grid-based planning

Lattice-based Graphs for Navigation

Carnegie Mellon University

discretize:

construct

the graph:

search the graph

for solution:

2D grid-based graph representation for 2D (x,y) search-based planning:

3D-grid (x,y,θ) would help a bit 

but won’t resolve the issue 
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Lattice-based Graphs for Navigation

• Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]

set of motion primitives 

pre-computed for each robot orientation 

(action template)

replicate it 

online 

by translating it 

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell in the underlying (x,y,θ,…) cell
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Lattice-based Graphs for Navigation

• Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]

- pros: sparse graph, feasible paths, can incorporate a variety of constraints

- cons: possible incompleteness

set of motion primitives 

pre-computed for each robot orientation 

(action template)

replicate it 

online 

by translating it 
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Lattice-based Graphs for Navigation

• Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]

- pros: sparse graph, feasible paths, can incorporate a variety of constraints

- cons: possible incompleteness

planning on 4D (<x,y,orientation,velocity>) multi-resolution lattice using Anytime D* 

[Likhachev & Ferguson, ‘09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Lattice-based Graphs for Navigation

• Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]

- pros: sparse graph, feasible paths, can incorporate a variety of constraints

- cons: possible incompleteness

planning in 8D (foothold planning) lattice-based graph for quadrupeds [Vernaza et al.,’09]

using R* search  [Likhachev & Stentz, ‘08]
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Lattice-based Graphs for Navigation

• 3D (x,y,θ) lattice-based graph representation (environment_navxythetalat.h/cpp in SBPL)

- takes set of motion primitives as input (.mprim files generated within matlab/mprim directory 

using corresponding matlab scripts):

- takes the footprint of the robot defined as a polygon as input

unicycle model                   or    unicycle with sideways motions     or …
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Lattice-based Graphs for Navigation

• 3D (x,y,θ) lattice-based graph representation for 3D (x,y,z) spaces  

(environment_navxythetamlevlat.h/cpp in SBPL)

- takes set of motion primitives as input

- takes N footprints of the robot defined as polygons as input. 

- each footprint corresponds to the projection of a part of the body onto x,y plane. 

- collision checking/cost computation is done for each footprint at the corresponding projection of 

the 3D map
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Graph Representation for Cart Planning 
[Scholz, Marthi, Chitta & Likhachev, in submission]

• 3D (x,y,θ,θcart) lattice-based graph representation (in a separate Cart Planner package)

- takes set of motion primitives feasible for the coupled robot-cart system as input (arm motions 

generated via IK)

- takes footprints of the robot and the cart defined as polygons as input
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Graph Representation for Arm Planning 
[Cohen, Chitta & Likhachev, ICRA’10; Cohen et al., in submission]

• 7D (joint angles) lattice-based graph representation (in a separate SBPL Arm Planner package)

- takes set of motion primitives defining joint angle changes as input

- takes joint angle limits and link widths

- goal is a 6 DoF pose for the end-effector
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Graph Representation for Door Opening Planning 
[Chitta, Cohen & Likhachev, ICRA’10]

• 4D (x,y,θ,door interval) graph representation (in a separate SBPL Door Planner package)

- takes set of motion primitives defining feasible x,y, θ,door angles in the door frame as input

- goal is for the door to be fully open

- suitable for pushing/pulling doors
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University
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S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs

• Once a graph is given (defined by environment file in SBPL), we 

need to search it for a path that minimizes cost as much 

as possible

Carnegie Mellon University
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• Many searches work by computing optimal g-values for 
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy:     g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs

Carnegie Mellon University
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• Many searches work by computing optimal g-values for 
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy:     g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs

Carnegie Mellon University
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• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s move to the predecessor state 
s’ such that 

)),''()''((minarg' )('' sscsgs spreds  

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

Searching Graphs

Carnegie Mellon University



Maxim Likhachev 23

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

at any point of time:

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University
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• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality): 

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility follows from consistency and often consistency 

follows from admissibility

A* Search
minimal cost from s to sgoal

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of candidates for expansion

for every expanded state 

g(s) is optimal 
(if heuristics are consistent)

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

set of states that have already been expanded

tries to decrease g(s’) using the 

found path from sstart to s

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g= 

h=1

g= 

h=02

S4 S3

3

g= 

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University



Maxim Likhachev 34

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University
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• Is guaranteed to return an optimal path (in fact, for every 

expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions 

required to guarantee optimality – optimal in terms of the 

computations

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty 

much)

• Intuitively: f(s) – estimate of the cost of a least cost path 

from start to goal via s

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

Carnegie Mellon University
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• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty 

much)

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path 

from sstart to s found so far

an (under) estimate of the cost 

of a shortest path from s to sgoal

Carnegie Mellon University
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Effect of the Heuristic Function

sgoal

sstart

• Dijkstra’s: expands states in the order of f = g values
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Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values
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Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly 

running out of memory (memory: O(n))
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Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f = 

g+εh values, ε > 1 = bias towards states that are closer to 

goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

Carnegie Mellon University
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Effect of the Heuristic Function

• Weighted A* Search: 

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude 

faster than A*

– research becomes to develop a heuristic function that has 

shallow local minima

Carnegie Mellon University
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Effect of the Heuristic Function

• Weighted A* Search: 

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude 

faster than A*

– research becomes to develop a heuristic function that has 

shallow local minima

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• Inefficient because 

–many state values remain the same between search iterations

–we should be able to reuse the results of previous searches

Carnegie Mellon University
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Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• ARA* [Likhachev, Gordon & Thrun, ‘04]

- an efficient version of the above that reuses state values within any search iteration

- uses incremental version of A*

Carnegie Mellon University
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Other Motivation for Incremental A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
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Other Motivation for Incremental A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 

done backwards
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Other Motivation for Incremental A*
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 

done backwards

Can we reuse these g-values from one search to

another? – incremental A*
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Use of Incremental A* in D* Lite [Koenig & Likhachev, ‘02]

• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

all v-values initially are infinite;

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

v-value – the value of a state 

during its expansion (infinite if 

state was never expanded)

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• this A* expands overconsistent states in the order of their f-values 

all v-values initially are infinite;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*
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ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

• this A* expands overconsistent states in the order of their f-values 

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to 

make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values



Maxim Likhachev Carnegie Mellon University 64

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 
h=2

g= 
v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

initially OPEN contains all overconsistent states

CLOSED = {}

OPEN = {s4,sgoal}

next state to expand: s4

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

CLOSED = {s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

after ComputePathwithReuse terminates: 

all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}

OPEN = {s3}

done

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

we can now compute a least-cost path

A* with Reuse of State Values



Maxim Likhachev Carnegie Mellon University 68

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

• Making weighted A* reuse old values:

A* with Reuse of State Values

just make sure no state is 

expanded multiple times
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• Efficient series of weighted A* searches with decreasing ε:

Anytime Repairing A* (ARA*)

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

need to keep track of those
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

otherwise insert s’ into INCONS

v(s)=g(s);

• OPEN U INCONS =  all overconsistent states  
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN = OPEN U INCONS;

all overconsistent states

(exactly what we need!)
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• A series of weighted A* searches 

• ARA*

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

1 expansion 

solution=11 moves

ε =1.0

9 expansions 

solution=10 moves

ARA*
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University



Maxim Likhachev Carnegie Mellon University 75

Anytime and Incremental Planning

• Anytime D* [Likhachev et al., ‘2008]: 

– decrease  and update edge costs at the same time

– re-compute a path by reusing previous state-values

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to handle cost increases
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Anytime and Incremental Planning

• Anytime D* in Urban Challenge

planning on 4D (<x,y,orientation,velocity>) multi-resolution lattice using Anytime D* 

[Likhachev & Ferguson, ‘09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
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Other Uses of Incremental A*

• Whenever planning is a repeated process:

– improving a solution (e.g., in anytime planning)

– re-planning in dynamic and previously unknown environments

– adaptive discretization

– many other planning problems can be solved via iterative planning
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University
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Heuristic Functions

Carnegie Mellon University

• 2D (x,y) Dijkstra’s taking into account all obstacles for:
- 3D (x,y,θ) lattice-based graph

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces 

- cart planning 

• Angle distance to the fully open door for:
- door opening planning

• 3D (x,y,z) Dijkstra’s for the end-effector taking into account all obstacles for:
- lattice-based arm motion graph (separate SBPL-based motion planning module)
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University
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Structure of SBPL

Carnegie Mellon University

Example configuration files to run main.cpp on. These can be used 

to test planners outside of ROS,  just running compiled test 

program in bin directory from the command line

Motion primitives used as input for 3D (x,y,θ) lattice-based 

planning and matlab files to generate new motion primitives

Few matlab scripts to visualize 3D paths and motion primitives

Environments (.cpp and .h files defining planning problems as 

graphs)

Domain-independent graph searches

For compiling under Windows using Visual Studio

For compiling under Linux/Windows using CMake
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Structure of SBPL

Carnegie Mellon University

Graph search 
(ARA*, Anytime D*, etc.)

memory allocated dynamically

Environment  represented as a 
graph (<x,y,θ> planning, arm 

planning, etc.)
graph constructed on the fly request for ID’s of successors states and 

transition costs during graph search

requests for heuristics

plan as a sequence of state ID’s

ID’s of start and goal states

ID’s of successor states, transition costs,…

heuristics 
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Structure of SBPL

Carnegie Mellon University

• Look at Main.cpp for examples for how to use SBPL:

EnvironmentNAVXYTHETALAT environment_navxythetalat;

if(!environment_navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))

{

SBPL_ERROR("ERROR: InitializeEnv failed\n");

throw new SBPL_Exception();

}

if(!environment_navxythetalat.InitializeMDPCfg(&MDPCfg))

{

SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");

throw new SBPL_Exception();

}

//plan a path

vector<int> solution_stateIDs_V;

bool bforwardsearch = false;

ADPlanner planner(&environment_navxythetalat, bforwardsearch);

if(planner.set_start(MDPCfg.startstateid) == 0)

{

SBPL_ERROR("ERROR: failed to set start state\n");

throw new SBPL_Exception();

}

if(planner.set_goal(MDPCfg.goalstateid) == 0)

{

SBPL_ERROR("ERROR: failed to set goal state\n");

throw new SBPL_Exception();

}

planner.set_initialsolution_eps(3.0);

bRet = planner.replan(allocated_time_secs, &solution_stateIDs_V);

SBPL_PRINTF("size of solution=%d\n",(unsigned int)solution_stateIDs_V.size());
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• Graph representations (implemented as environments for SBPL)
- 3D (x,y,θ) lattice-based graph (within SBPL)

- 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)

- Cart planning (separate SBPL-based package)

- Lattice-based arm motion graph (separate SBPL-based motion planning module)

- Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
- ARA* - anytime version of A*

- Anytime D* - anytime incremental version of A*

- R*  - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming

What I will talk about

Carnegie Mellon University
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• Planning in Dynamic Environments

• Planning for Spring-loaded Doors

• ROS package for (x,y,θ) planning while accounting for the whole body of 

PR2 in 3D (x,y,z)

What’s coming

Carnegie Mellon University
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Thanks to Willow Garage for the support of SBPL!

Carnegie Mellon University

http://www.ros.org/wiki/sbpl


