Search-based Planning with Motion Primitives

Maxim Likhachev Carnegie Mellon University

What is Search-based Planning

- generate a graph representation of the planning problem
- search the graph for a solution
- can interleave the construction of the representation with the search (i.e., construct only what is necessary)

lattice-based graph representation for 3D (x,y, θ) planning:

Maxim Likhachev

Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl
- SBPL is:
 - a library of domain-independent graph searches
 - a library of environments (planning problems) that represent the problems as graph search problems
 - designed to be so that the same graph searches can be used to solve a variety of environments (graph searches and environments are independent of each other)
 - a standalone library that can be used with or without ROS and under linux or windows

Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl
- SBPL can be used to:
 - implement particular planning modules such as x, y, θ planning and arm motion planning modules within ROS
 - design and drop-in new environments (planning problems) that represent the problem as a graph search and can therefore use existing graph searches to solve them
 - design and drop-in new graph searches and test their performance on existing environments

Search-based Planning Library (SBPL)

- Currently implemented graph searches within SBPL:
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (hybrid between deterministic searches and samplingbased planning)
- Currently implemented environments (planning problems) within SBPL:
 - 2D(x,y) grid-based planning problem
 - $3D(x, y, \theta)$ lattice-based planning problem
 - $3D(x,y,\theta)$ lattice-based planning problem with 3D(x,y,z) collision checking
 - N-DOF planar robot arm planning problem
- ROS packages that use SBPL:
 - SBPL lattice global planner for (x, y, θ) planning for navigation
 - SBPL cart planner for PR2 navigating with a cart
 - SBPL motion planner for PR2 arm motions
 - default move_base invokes SBPL lattice global planner as part of escape behavior
- Unreleased ROS packages and other planning modules that use SBPL:
 - SBPL door planning module for PR2 opening and moving through doors
 - SBPL planning module for navigating in dynamic environments
 - 4D planning module for aerial vehicles (x, y, z, θ)

What I will talk about

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x, y, \theta)$ lattice-based graph for 3D(x, y, z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

• Problems with (very popular) pure grid-based planning

2D grid-based graph representation for 2D (x,y) search-based planning:

sharp turns do not incorporate the kinodynamics constraints of the robot

• Problems with (very popular) pure grid-based planning

(S3) (S_1) (S_2) construct search the graph S₁ S_2 S₃ the graph: for solution: discretize: (S₄) S5 S₄ S_5 S_6 S_6

> 3D-grid (x,y,θ) would help a bit but won't resolve the issue

2D grid-based graph representation for 2D (x, y) search-based planning:

• Graphs constructed using motion primitives [Pivtoraiko & Kelly, '05]

outcome state is the center of the corresponding cell in the underlying $(x, y, \theta, ...)$ cell

Maxim Likhachev

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, '05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

set of motion primitives pre-computed for each robot orientation *(action template)* $C(s_1, s_4) = 5$ $C(s_A, s_7)$ C(s₄,s₀) = 5 $C(s_1, s_6) =$ replicate it online by translating it S₁₁

Maxim Likhachev

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, '05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

planning on 4D (<x,y,orientation,velocity>) multi-resolution lattice using Anytime D* [Likhachev & Ferguson, '09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, '05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

planning in 8D (foothold planning) lattice-based graph for quadrupeds [Vernaza et al., '09] using R* search [Likhachev & Stentz, '08]

- 3D (x, y, θ) lattice-based graph representation (*environment_navxythetalat.h/cpp in SBPL*)
 - takes set of motion primitives as input (.mprim files generated within matlab/mprim directory using corresponding matlab scripts):

- takes the footprint of the robot defined as a polygon as input

• 3D (x, y, θ) lattice-based graph representation for 3D (x, y, z) spaces (*environment_navxythetamlevlat.h/cpp in SBPL*)

- takes set of motion primitives as input
- takes N footprints of the robot defined as polygons as input.
- each footprint corresponds to the projection of a part of the body onto *x*, *y* plane.
- collision checking/cost computation is done for each footprint at the corresponding projection of

the 3D map

Maxim Likhachev

Graph Representation for Cart Planning

[Scholz, Marthi, Chitta & Likhachev, in submission]

- 3D ($x, y, \theta, \theta_{cart}$) lattice-based graph representation (*in a separate Cart Planner package*)
 - takes set of motion primitives *feasible for the coupled robot-cart* system as input (arm motions generated via IK)
 - takes footprints of the robot and the cart defined as polygons as input

Maxim Likhachev

Graph Representation for Arm Planning

[Cohen, Chitta & Likhachev, ICRA'10; Cohen et al., in submission]

• 7D (*joint angles*) lattice-based graph representation (*in a separate SBPL Arm Planner package*)

- takes set of motion primitives defining joint angle changes as input
- takes joint angle limits and link widths
- goal is a 6 DoF pose for the end-effector

Maxim Likhachev

Graph Representation for Door Opening Planning

[Chitta, Cohen & Likhachev, ICRA'10]

• 4D (*x*,*y*,*θ*,*door interval*) graph representation (*in a separate SBPL Door Planner package*)

- takes set of motion primitives defining feasible x, y, θ , door angles in the door frame as input
- goal is for the door to be fully open
- suitable for pushing/pulling doors

Maxim Likhachev

What I will talk about

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x, y, \theta)$ lattice-based graph for 3D(x, y, z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

• Once a graph is given (defined by environment file in SBPL), we need to search it for a path that minimizes cost as much as possible

- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$

- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$

- Least-cost path is a greedy path computed by backtracking:
 - start with s_{goal} and from any state *s* move to the predecessor state *s*' such that $s' = \arg \min_{s' \in pred(s)} (g(s'') + c(s'', s))$

• Computes optimal g-values for relevant states

at any point of time:

- Computes optimal g-values for relevant states
- at any point of time:

one popular heuristic function – Euclidean distance

minimal cost from s to s_{goal}

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c^*(s, s_{goal})$
 - consistent (satisfy triangle inequality):

 $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$

admissibility follows from consistency and often consistency follows from admissibility

• Computes optimal g-values for relevant states Main function

 $g(s_{start}) = 0$; all other *g*-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

set of candidates for expansion

while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*;

• Computes optimal g-values for relevant states

ComputePath function

Maxim Likhachev

while(s_{goal} is not expanded) remove *s* with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand *s*;

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s')f(s') = g(s) + c(s,s');insert s' into OPEN; set of states that have already been expanded $g \equiv \infty$ $g = \infty$ h=2h=1tries to decrease g(s') using the g=0 S_2 S $g = \infty$ found path from s_{start} to s h=3h=0(S_{sta}, (Sgoar 3 S_4 S_2 $g = \infty$ $g = \infty$ h=2h=1Maxim Likhachev **Carnegie Mellon University** 28

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

Computes optimal g-values for relevant states
 ComputePath function
 while(g______is not expanded)

while(s_{goal} is not expanded) remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert *s*' into *OPEN*;

Maxim Likhachev

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

$$CLOSED = \{s_{start}, s_2\}$$

$$OPEN = \{s_1, s_4\}$$

$$next state to expand: s_1$$

$$g=0$$

$$h=3$$

$$s_{start}$$

$$g=0$$

$$s_{start}$$

$$s_{sta$$

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s');$
insert *s*' into *OPEN*;

Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

 Computes optimal g-values for relevant states
 ComputePath function while(s_{goal} is not expanded)

remove *s* with the smallest [f(s) = g(s)+h(s)] from *OPEN*; insert *s* into *CLOSED*;

for every successor s' of s such that s'not in CLOSED

- Is guaranteed to return an optimal path (in fact, for every expanded state) optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality optimal in terms of the computations

Maxim Likhachev

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Intuitively: f(s) estimate of the cost of a least cost path from start to goal via s

an (under) estimate of the cost of a shortest path from s to s_{goal}

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Weighted A*: expands states in the order of f = g+εh values, ε > 1 = bias towards states that are closer to goal

• Dijkstra's: expands states in the order of f = g values

S

start

• A* Search: expands states in the order of f = g + h values

• A* Search: expands states in the order of f = g + h values

Weighted A* Search: expands states in the order of f = g+εh values, ε > 1 = bias towards states that are closer to goal

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:

 $cost(solution) \leq \varepsilon cost(optimal solution)$

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:

 $cost(solution) \leq \varepsilon cost(optimal solution)$

- in many domains, it has been shown to be orders of magnitude faster than A*
- research becomes to develop a heuristic function that has shallow local minima

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε :

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε :

solution=11 moves

solution=11 moves

solution=10 moves

Inefficient because

-many state values remain the same between search iterations

-we should be able to reuse the results of previous searches

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε :

- ARA* [Likhachev, Gordon & Thrun, '04]
 - an efficient version of the above that reuses state values within any search iteration
 - uses incremental version of A*

Other Motivation for Incremental A*

• Reuse state values from previous searches

cost of least-cost paths to s_{goal} initially

											0						
14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	S _{goal}	1	2	3
					9				5	4	3	2	1	1	1	2	3
14	13	12	11	10	9	8	7	6	-5	4	3	2	2	2	2	2	3
14	13	12	11	10	9				5	4	3	3	3	3	3	3	3
14	13	12	11	10	10		7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	11	11		7	6	5	5	5	5	5	5	5	5	5
14	13	12	12	12	12		7	6	6	6	6	6	6	6	6	6	6
					13		7	7	7	7	7	7	7	7	7	7	7
18	S _{start}	16	15	-14	14		8	8	8	8	8	8	8	8	8	8	8

cost of least-cost paths to s_{goal} after the door turns out to be closed

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	-5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	S _{goal}	1	2	3
					10				5	4	3	2	1	1	1	2	3
15	14	13	12	11	11		7	6	5	4	3	2	2	2	2	2	3
15	14	13	12	12	Sstart				5	4	3	3	3	3	3	3	3
15	14	13	13	13	13		7	6	5	4	4	4	4	4	4	4	4
15	14	14	14	14	14		7	6	5	5	5	5	5	5	5	5	5
15	15	15	15	15	15		7	6	6	6	6	6	6	6	6	6	6
					16		7	7	7	7	7	7	7	7	7	7	7
21	20	19	18	17	17		8	8	8	8	8	8	8	8	8	8	8

Maxim Likhachev

Other Motivation for Incremental A*

• Reuse state values from previous searches

cost of least-cost paths to s_{goal} initially

cost of least-cost paths to s_{goal} after the door turns out to be closed

14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
14	13	12	11		9		7	6	5	4	3	2	1	Sgoal	1	2	3
					10				5	4	3	2	1	1	1	2	3
15	14	13	12	11	11		7	6	5	4	3	2	2	2	2	2	3
15	14	13	12	12	Sstart				5	4	3	3	3	3	3	3	3
15	14	13	13	13	13		7	6	5	4	4	4	4	4	4	4	4
15	14	14	14	14	14		7	6	5	5	5	5	5	5	5	5	5
15	15	15	15	15	15		7	6	6	6	6	6	6	6	6	6	6
					16		7	7	7	7	7	7	7	7	7	7	7
21	20	19	18	17	17		8	8	8	8	8	8	8	8	8	8	8

Maxim Likhachev

Other Motivation for Incremental A*

• Reuse state values from previous searches

cost of least-cost paths to s_{goal} initially

Maxim Likhachev

Use of Incremental A* in D* Lite [Koenig & Likhachev, '02]

• Reuse state values from previous searches

initial search by D Lite*

second search by backwards A*

second search by D* Lite

• Alternative view of A*

all v-values initially are infinite;

ComputePath function

while($f(s_{goal}) > \text{minimum } f$ -value in *OPEN*) remove s with the smallest [g(s) + h(s)] from *OPEN*; insert s into *CLOSED*; for every successor s' of sif g(s') > g(s) + c(s,s')g(s') = g(s) + c(s,s');insert s' into *OPEN*;

Alternative view of A*

all *v*-values initially are infinite; **ComputePath function** while($f(s_{goal}) > \text{minimum } f\text{-value in } OPEN$) remove *s* with the smallest [g(s) + h(s)] from OPEN; insert *s* into *CLOSED*; v(s) = g(s);for every successor *s*' of *s* if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert *s*' into OPEN;

• Alternative view of A*

all *v*-values initially are infinite;

ComputePath function

while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

•
$$g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$$

• Alternative view of A*

all *v*-values initially are infinite;

ComputePath function

while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

•
$$g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$$

• Alternative view of A*

all *v*-values initially are infinite;

ComputePath function

```
while(f(s_{goal}) > \text{minimum } f\text{-value in } OPEN)
remove s with the smallest [g(s) + h(s)] from OPEN;
insert s into CLOSED;
v(s)=g(s);
for every successor s' of s
if g(s') > g(s) + c(s,s')
```

g(s') = g(s) + c(s,s');insert s' into OPEN;

overconsistent state

consistent state

• *OPEN*: a set of states with
$$v(s) > g(s)$$

all other states have $v(s) = g(s)$

• $g(s') = \min_{y' \in V(s')} v(s'') + c(s'',s')$

• Alternative view of A*

all *v*-values initially are infinite;

ComputePath function

```
while(f(s_{goal}) > \text{minimum } f\text{-value in } OPEN)
remove s with the smallest [g(s) + h(s)] from OPEN;
insert s into CLOSED;
v(s)=g(s);
for every successor s' of s
if g(s') > g(s) + c(s,s')
```

g(s') = g(s) + c(s,s');insert s' into OPEN;

overconsistent state

consistent state

•
$$OPEN$$
: a set of states with $v(s) > g(s)$

all other states have v(s) = g(s)

• $\alpha(\alpha') - \min$

y(q'') + c(q''q')

• Alternative view of A*

all *v*-values initially are infinite;

ComputePath function

while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

- $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- OPEN: a set of states with v(s) > g(s) all other states have v(s) = g(s)
- this A* expands overconsistent states in the order of their f-values

• Making A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function

while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ h(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

if g(s') > g(s) + c(s,s') g(s') = g(s) + c(s,s');insert *s*' into *OPEN*;

- $g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- OPEN: a set of states with v(s) > g(s) all other states have v(s) = g(s)
- this A* expands overconsistent states in the order of their f-values

all you need to do to

make it reuse old values!

Maxim Likhachev

after ComputePathwithReuse terminates: all g-values of states are equal to final A* g-values

we can now compute a least-cost path

• Making weighted A* reuse old values:

initialize OPEN with all overconsistent states;

ComputePathwithReuse function

while($f(s_{goal})$ > minimum *f*-value in *OPEN*) remove *s* with the smallest [g(s)+ $\varepsilon h(s)$] from *OPEN*; insert *s* into *CLOSED*;

Anytime Repairing A* (ARA*)

• Efficient series of weighted A* searches with decreasing ε :

set ε to large value;

 $g(s_{start}) = 0$; *v*-values of all states are set to infinity; $OPEN = \{s_{start}\}$; while $\varepsilon \ge 1$

 $CLOSED = \{\};$

ComputePathwithReuse();

publish current ε suboptimal solution;

decrease *ɛ*;

initialize OPEN with all overconsistent states;

ARA*

• Efficient series of weighted A* searches with decreasing ε :

set ε to large value;

 $g(s_{start}) = 0$; *v*-values of all states are set to infinity; $OPEN = \{s_{start}\}$; while $\varepsilon \ge 1$

 $CLOSED = \{\};$

ComputePathwithReuse();

publish current ε suboptimal solution;

decrease *ɛ*;

initialize OPEN with all overconsistent states;

ARA*

• Efficient series of weighted A* searches with decreasing ε :

initialize OPEN with all overconsistent states;

ComputePathwithReuse function

while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s)+ ɛh(s)] from OPEN;
insert s into CLOSED;

v(s)=g(s);

for every successor s' of s

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
if s' not in CLOSED then insert s' into OPEN;
otherwise insert s' into INCONS

• *OPEN U INCONS* = all overconsistent states

ARA*

• Efficient series of weighted A* searches with decreasing ε :

set ε to large value;

 $g(s_{start}) = 0$; *v*-values of all states are set to infinity; $OPEN = \{s_{start}\}$; while $\varepsilon \ge 1$

CLOSED = {}; *INCONS* = {};

ComputePathwithReuse();

publish current ε suboptimal solution;

decrease *ɛ*;

initialize *OPEN* = *OPEN U INCONS*;

all overconsistent states (exactly what we need!)
ARA*

• A series of weighted A* searches

Maxim Likhachev

Carnegie Mellon University

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x, y, \theta)$ lattice-based graph for 3D(x, y, z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

Anytime and Incremental Planning

- Anytime D* [Likhachev et al., '2008]:
 - decrease ε and update edge costs at the same time
 - re-compute a path by reusing previous state-values

set ε to large value;

until goal is reached

ComputePathwithReuse(); //modified to handle cost increases publish *ɛ*-suboptimal path;

follow the path until map is updated with new sensor information; update the corresponding edge costs;

set s_{start} to the current state of the agent;

if significant changes were observed

increase ε or replan from scratch;

else

decrease *ɛ*;

Anytime and Incremental Planning

• Anytime D* in Urban Challenge

planning on 4D (<x,y,orientation,velocity>) multi-resolution lattice using Anytime D* [Likhachev & Ferguson, '09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Other Uses of Incremental A*

- Whenever planning is a repeated process:
 - improving a solution (e.g., in anytime planning)
 - re-planning in dynamic and previously unknown environments
 - adaptive discretization
 - many other planning problems can be solved via iterative planning

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x,y,\theta)$ lattice-based graph for 3D(x,y,z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

Heuristic Functions

- 2D(x,y) Dijkstra's taking into account all obstacles for:
 - 3D (x, y, θ) lattice-based graph
 - 3D (x, y, θ) lattice-based graph for 3D (x, y, z) spaces
 - cart planning
- Angle distance to the fully open door for:
 - door opening planning
- 3D(x,y,z) Dijkstra's for the end-effector taking into account all obstacles for:
 - lattice-based arm motion graph (separate SBPL-based motion planning module)

Maxim Likhachev

Carnegie Mellon University

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x, y, \theta)$ lattice-based graph for 3D(x, y, z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

Structure of SBPL

Carnegie Mellon University

Structure of SBPL

	ID's of start and goal states	
Environment represented as a graph (<x,y,θ> planning, arm planning, etc.) graph constructed on the fly</x,y,θ>	ID's of successor states, transition costs, heuristics	Graph search (ARA*, Anytime D*, etc.) memory allocated dynamically
	<	
	request for ID's of successors states and transition costs during graph search requests for heuristics plan as a sequence of state ID's	

Structure of SBPL

Look at Main.cpp for examples for how to use SBPL:

```
EnvironmentNAVXYTHETALAT environment_navxythetalat;
if(!environment_navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))
              SBPL_ERROR("ERROR: InitializeEnv failed\n");
              throw new SBPL_Exception();
if(!environment_navxythetalat.InitializeMDPCfg(&MDPCfg))
              SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");
              throw new SBPL_Exception();
//plan a path
vector<int> solution stateIDs V;
bool bforwardsearch = false;
ADPlanner planner(&environment_navxythetalat, bforwardsearch);
if(planner.set\_start(MDPCfg.startstateid) == 0)
              SBPL ERROR("ERROR: failed to set start staten");
              throw new SBPL_Exception();
if(planner.set_goal(MDPCfg.goalstateid) == 0)
              SBPL ERROR("ERROR: failed to set goal staten");
              throw new SBPL_Exception();
 planner.set_initialsolution_eps(3.0);
bRet = planner.replan(allocated time secs, \& solution stateIDs V);
SBPL_PRINTF("size of solution=%d\n",(unsigned int)solution_stateIDs_V.size());
```

- Graph representations (implemented as environments for SBPL)
 - $3D(x, y, \theta)$ lattice-based graph (within SBPL)
 - $3D(x, y, \theta)$ lattice-based graph for 3D(x, y, z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
 - ARA* anytime version of A*
 - Anytime D* anytime incremental version of A*
 - R* a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

What's coming

- Planning in Dynamic Environments
- Planning for Spring-loaded Doors
- ROS package for (x, y, θ) planning while accounting for the whole body of PR2 in 3D (x, y, z)

http://www.ros.org/wiki/sbpl

Thanks to Willow Garage for the support of SBPL!

Maxim Likhachev