
OMPL: The Open Motion Planning Library

Mark Moll
Department of Computer Science
Rice University
Houston, TX
USA

Intended use

• Education

• Motion planning research

• Industry

Design objectives

• Clarity of concepts

• Efficiency

• Simple integration with other software packages

• Straightforward integration of external contributions

Other motion planning software

• MPK, Schwarzer, Saha, Latombe

• MSL, LaValle et al.

• OpenRAVE, Diankov & Kuffner

• KineoWorks, Laumond et al.

• OOPSMP, Plaku et al.

Other related robotics software

• ROS

• Player/Stage, Player/Gazebo

• Webots

• MORSE

• Microsoft Robotics Developer Studio

Main features of OMPL

OMPL in a nutshell	

• Common core for sampling-based motion planners

• Includes commonly-used heuristics

• Takes care of many low-level details often skipped in corresponding papers

Abstract interface to
all core motion planning concepts

• state space / control space

• state validator (e.g., collision checker)

• sampler

• goal (problem definition)

• planner

• ...

except robot & workspace...

States & state spaces

abstract state space

States & state spaces

abstract state space

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality

States & state spaces

abstract state space

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality

rotation (2D,3D) translation (ℝn)

States & state spaces

abstract state space

API requirements:
- StateType
- alloc/free state
- distance
- interpolation
- state equality

rotation (2D,3D) translation (ℝn)

compound used for:
- rigid body motions
- manipulators
- ...

Control spaces & controls

• Needed only for control-based planning

• Analogous to state spaces and states:

abstract control space

ℝn

API requirements:
- ControlType
- alloc/free control
- equality

compound

State validators

• Problem-specific; must be defined by user or
defined by layer on top of OMPL core → ompl_ros_interface

• Checks whether state is collision-free, joint angles and velocities are within
bounds, etc.

• Optionally, specific state validator implementations can return

• distance to nearest invalid state (i.e., nearest obstacle)

• gradient of distance

Can be exploited by planners / samplers!

Most common state validator:
collision checker

Several options:

• Implemented in ROS on top of sensor-derived
world model

• Implemented in OMPL.app for triangle meshes
using PQP library

• Easy to add wrappers for other libraries

Need to define specific world representation to
implement collision checking

image from pointclouds.org

images from PQP web site

Samplers

• For every state space there needs to be a state sampler

• State samplers need to support the following:

Samplers

• For every state space there needs to be a state sampler

• State samplers need to support the following:

• sample uniform

Samplers

• For every state space there needs to be a state sampler

• State samplers need to support the following:

• sample uniform

• sample uniform near given state

Samplers

• For every state space there needs to be a state sampler

• State samplers need to support the following:

• sample uniform

• sample uniform near given state

• sample from Gaussian centered at given state

Many ways to get sampling wrong

naïve & wrong:

Example: uniformly sampling 3D orientations

correct:

Images from Kuffner, ICRA ’04

Similar issues occur for nearest neighbors

• k nearest neighbors can be computed efficiently with kd-trees in
low-dimensional, Euclidean spaces.

• In high-dimensional spaces approximate nearest neighbors much better

• In non-Euclidean spaces (e.g., any space that includes rotations), other data
structures are necessary

Valid state samplers

• Valid state samplers combine low-level state
samplers with the validity checker

• Simplest form: sample at most n times to get
valid state or else return failure

x
x

x

Valid state samplers

• Valid state samplers combine low-level state
samplers with the validity checker

• Simplest form: sample at most n times to get
valid state or else return failure

• Other sampling strategies:

x
x

x

Valid state samplers

• Valid state samplers combine low-level state
samplers with the validity checker

• Simplest form: sample at most n times to get
valid state or else return failure

• Other sampling strategies:

• Try to find samples with a large clearance

x
x

x

x
x

x
x

Valid state samplers

• Valid state samplers combine low-level state
samplers with the validity checker

• Simplest form: sample at most n times to get
valid state or else return failure

• Other sampling strategies:

• Try to find samples with a large clearance

• Try to find samples near obstacles
(more dense sampling in/near narrow
passages)

x
x

x

x
x

x
x

x
x

x
x

Goals

can only tell whether state
satisfies Goal condition

provides distance
to goal region

can sample from
goal region

single goal state

multiple goal states

multiple goal states,
computed in

separate thread

GoalSampleableRegion

GoalLazySamples

GoalState

GoalRegion

Goal

GoalStates

Planners

• Take as input a problem definition:
object with one or more start states and a goal object

• Planners need to implement two methods:

• solve:
– takes PlannerTerminationCondition object as argument
– termination can be based on timer, external events, ...

• clear:
clear internal data structures, free memory, ready to run solve again

Many planners available in OMPL

Planner

EST

BKPIECEKPIECE

LazyRRTLBKPIECE

PRM RRT

RRTConnect

SBL KPIECE

RRT

geometric planning planning with controls

Many planners available in OMPL

Planner

EST

BKPIECEKPIECE

LazyRRTLBKPIECE

PRM RRT

RRTConnect

SBL KPIECE

RRT

geometric planning planning with controls

SyCLoP RRT* BallTreeRRT*

coming soon! just added!

API overview

ValidStateSampler

only when planning with differential constraints

ControlSampler ControlSpace StateSpace StateSampler

StatePropagator

SpaceInformation StateValidityChecker

API overview

ValidStateSampler

only when planning with differential constraints

ControlSampler ControlSpace StateSpace StateSampler

StatePropagator

SpaceInformation StateValidityChecker

Planner SimpleSetup ProblemDefinition Goal

User code

must instantiate
must instantiate, unless using SimpleSetup
can instantiate, but defaults available
A is owned by BA→B

API overview

ValidStateSampler

only when planning with differential constraints

ControlSampler ControlSpace StateSpace StateSampler

StatePropagator

SpaceInformation StateValidityChecker

Path

Planner SimpleSetup ProblemDefinition Goal

User code

must instantiate
must instantiate, unless using SimpleSetup
can instantiate, but defaults available
A is owned by BA→B

API overview

ProjectionEvaluator

MotionValidator

ValidStateSampler

only when planning with differential constraints

ControlSampler ControlSpace StateSpace StateSampler

StatePropagator

SpaceInformation StateValidityChecker

Path

Planner SimpleSetup ProblemDefinition Goal

User code

must instantiate
must instantiate, unless using SimpleSetup
can instantiate, but defaults available
A is owned by BA→B

Minimal code example

Minimal code example

Benchmarking

(s
ec
.)

SimpleSetup setup;
// motion planning problem setup code omitted
Benchmark b(setup, “My First Benchmark”);

b.addPlanner(base::PlannerPtr(new geometric::RRT(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::KPIECE1(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::SBL(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::EST(setup.getSpaceInformation())));
b.addPlanner(base::PlannerPtr(new geometric::PRM(setup.getSpaceInformation())));

b.benchmark(runtime_limit, memory_limit, run_count, true);
b.saveResultsToFile();

Benchmarking

Script post-processes benchmark log files
to create/update SQLite database and plots

OMPL.app

• Front-end that demonstrates integration with libraries for collision checking,
3D mesh loading, GUI toolkit

• Easy-to-use tool for novices to get started

• Alternative to ompl_ros_interface

OMPL.app demo / screencast

Resources to get started with OMPL

OMPL online

• Web site:
http://ompl.kavrakilab.org

• Mailing lists:

• Developers: ompl-devel@lists.sourceforge.net

• Users: ompl-users@lists.sourceforge.net

• Public Mercurial repository:
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
mailto:ompl-devel@sf.net
mailto:ompl-devel@sf.net
mailto:ompl-users@lists.sourceforge.net
mailto:ompl-users@lists.sourceforge.net
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl

OMPL for education

• Programming assignments centered around OMPL, available upon request.

• Ongoing educational assessment.

• Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010

OMPL tutorials

Step-by-step walkthroughs for:

• geometric planning for rigid body in 3D

• working with states and state spaces

• representing goals

• benchmarking

• creating new planning algorithms

OMPL examples

• Many demos for basic usage patterns,
often available in both C++ and Python

• Demos for advanced features:

1. Lazy goal sampler, generic numerical IK solver

2. Using the Open Dynamics Engine

Example 1: lazy goal sampler + IK

• Spawn thread responsible for generating goal states

• generate as many goal states as user wants

• OMPL comes with Genetic Algorithm-based IK solver,
but other types of solvers can be used

• Planner waits until at least one goal state is available

• Can use bi-directional planner with implicit goal region in state space

• Same approach is used in ROS for end-effector constraints

Example 2: OMPL + ODE

• Treat ODE physics engine as a black box state propagation function:
Given state, controls, and time duration, ODE produces new state

• Can plan for systems with movable objects, various contact modes, etc.
• Same approach can be used for other physics engines

Discussion

• OMPL actively developed, but ready for general use

• Can easily implement new algorithms from many reusable components

• Simple high-level interface:

• Can treat motion planner almost as a black box

• Easy enough that non-experts can use it

• Interface generic enough to be extensible in many ways

We want your contributions!

Acknowledgements

Rice University:
Ioan Şucan
Lydia Kavraki
Matt Maly
Devin Grady
Bryant Gipson
Amit Bhatia

Willow Garage:

Sachin Chitta
Gil Jones

Funding from:
NSF CCLI grant #0920721
Willow Garage

