
Robot description (URDF)
This should exist on the parameter server. Most applications 
that use this description assume the parameter name is 
'robot_description'. Since this may not be the name, the 
description should be remapped.

pr2_defs is the package that contains this description and a 
launch file that sends the description to the parameter server.

Collision & planning description

In addition to the robot description we also need to know 
which robot links need to be checked for collision (and with 
what padding, scaling), which links the robot can see with it 
own sensors (so we can clear point clouds of points on self). 
For planning purposes, we need to define groups of links for 
which we plan for. The parent joints of the links are the the 
joints we actually control.

This information exists as YAML files in the pr2_defs 
package. A launch file that sends this information to the 
parameter server is also available. The description of the 
content for these YAML files is available in the 
documentation for the planning_environment package.

Planning Models

Planning models are representations of the robot we want to perform motion planning for. 
These models should be placed in the planning_models package. Currently, only a 
kinematic model (planning_models::KinematicModel) is available. This model is able to 
perform forward kinematics for groups of joints (the ones we want to plan for) and compute 
the transforms for every link of the robot in the frame of the link that attaches the robot to 
the environment. A parsed robot description needs to be provided as input so that a robot 
model can be constructed. A state of the kinematic model (set of joint values) can be 
maintained using the planning_models::StateParams class.

Usually, models in this package should not be used directly, but only through the 
planning_environment::RobotModels class from the planning_environment package, which 
provides an instance of each existing robot model, based on data from the parameter server.

Collision Spaces

The collision_space package contains definitions of environment models. These 
environment models perform collision checking between the robot and the obstacles in the 
environment and self collision checking. Different back-ends are possible, depending on the 
collision checker used behind the scenes (ODE, Bullet). The user should however use only 
the provided abstract interface. An instance of a planning_models::KinematicModel needs 
to be provided so that the positions of the robot's links can be computed. Environment 
models can be cloned, which allows performing collision checking in parallel.

Usually, models in this package should not be used directly, but only through the 
planning_environment::CollisionModels class from the planning_environment package, 
which provides an instance of every existing collision model, based on data from the 
parameter server.

Planning Environment

The planning_environment package creates robot models and collision space models for use with motion planning, using information loaded on the ROS parameter server. All information specified by the 
collision & planning descriptions is available as well. In addition to these models, monitors for various models are available as well. These monitors listen to relevant ROS topics to maintain things such as the 
current robot state or the current state of the collision environment. 

In general, applications that perform motion planning should make use of the available monitors (usually planning_environment::PlanningMonitor). Please read the documentation for the planning_environment 
package as well.

Perception

For motion planning to work, sensor data about the 
environment must be available. Lasers or cameras can be 
used; what matters is that mapping_msgs::CollisionMap 
and/or mapping_msgs::ObjectInMap messages get to the 
planning environment. For the robot state, 
robot_msgs::MechanismState is needed.

Example launch files that start perception are in the 
tabletop_scripts package.

Planning Node

This must be a not that provides a service for motion planning. There are multiple 
packages that perform this function: ompl*, sbpl*, chmp*

Moving Action

This is a robot action (such as the move_arm package) that allows the robot to move to a desired 
goal. Th motion planner is asked for a path, which then gets sent to the controller. As the robot is 
moving, the environment is monitored and if the path becomes invalid, the controller is asked to 
stop the path execution and the planner is asked to compute a new path.

When planning for an arm to a goal location in space, inverse kinematics may be used as well.

Example launch files for starting the moving action and corresponding controllers, planning node 
and inverse kinematics are in the tabletop_scripts package.

Inverse Kinematics

If desired, inverse kinematics can be used to find joint angles at the goal location.

Trajectory Controller

This is a controller that can execute a trajectory produced by the motion planner. 
The controller must be able to report which joints it acts upon and must be able to 
cancel trajectories that are currently being executed.

Sensor

Produces point cloud information

Clear Known Objects

Remove points in the pointcloud that correspond to known 
objects. The code for this is in the planning_environment 
package.

Robot Self Filter

Add a channel in the pointcloud that marks which points are 
on the robot and which are actually points on the obstacles. 
This code is in the robot_self_filter package.

Collision Map

Create a collision map from the received point cloud. This 
code is in the collision_map package.

Executive

This is where the code that decides which goals we are to pursue lives.

Object Recognition

This is where code that can perform object recognition lives. For example, the 
recognition_lambertian package or the table_object_detector package.




