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Abstract— Building robots capable of long term autonomy
has been a long standing goal of robotics research. Such systems
must be capable of performing certain tasks with a high degree
of robustness and repeatability. In the context of personal
robotics, these tasks could range anywhere from retrieving
items from a refrigerator, loading a dishwasher, to setting up
a dinner table. Given the complexity of these tasks there are
a multitude of failure scenarios that the robot can encounter,
irrespective of whether the environment is static or dynamic.
For a robot to be successful in such situations, it would need
to know how to recover from failures or when to ask a human
for help.

In this paper, we present a novel shared autonomy behavioral
executive to addresses these issues. We demonstrate how this
executive combines generalized logic based recovery and human
intervention to achieve continuous failure free operation. We
tested the systems over 250 trials of two different use case
experiments. We observed that our current algorithm drasti-
cally reduced human intervention from 26% to 4% on the first
experiment and 46% to 9% on the second experiment. This
system provides a new dimension to robot autonomy, where
robots can exhibit long term failure free operation with minimal
human supervision. We also discuss how the system can be
generalized.

I. INTRODUCTION

For robots to be successful in any domain outside in-
dustrial applications, a fundamental requirement that needs
to be addressed is long term autonomy. Ideally one would
like to restrict human supervision to tasks such as initiation
of a desired activity or intervention during failure. Such
an approach in personal robotics would require systems to
be more robust and reliable than demonstrated by current
state-of-the-art. Since personal robots enagage in complex
interactions with their environment, achieving this robustness
becomes a challenging task. As Meeussen et al [1] have
noted, in the event of a failure the robot should be capable
of asking for help, but the question remains as to how and
when this should be done. In this paper, we examine some
of these questions.

Robot autonomy is an extremely difficult task even in
highly constrained environments. In the personal robotics
domain, robotic assistants are expected to perform roles
similar to that of a maid or a busboy: clearing a table, getting
drinks from a refrigerator etc. In the current state-of-the-art
high level tasks like these are accomplished through execu-
tives which execute high level robot actions to accomplish
these tasks. Such a task level executive architecture has been
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demonstrated by Bohren et al in the SMACH system [2].
Such systems are useful as they are specified via high level
tasks which are analagous to human instruction. This form
of a system enables rapid prototyping for application devel-
opment in comparison to imperative scripting approaches or
model based task-planners. Task executives primarily act as
a procedure definition system for task planners, which make
them extremely flexible and reusable while being analogous
to human style instruction. Though general enough to incor-
porate any robot action to accomplish a task, such systems
are highly prone to failure. Since these executives operate
on high level actions, any system built to recover from the
failure of these high level actions needs do so without the
knowledge of the underlying low level mechanisms. Also
when scripting these systems to recover from failure, it is not
possible to account for every failure case during the design
phase. In these scenarios identifying the source of failure and
troubleshooting the specific subsystem is not plausible due
to the unknown complexity of the underlying system.

In this paper, we present an architecture which performs
logic based recovery actions on such task executives. Since
these task executives are defined as state machines, the
recovery architecture operates on the states of the state
machine to enable efficient failure recovery. The recovery
architecture also incorporates an expert interface to enable
human intervention in the case of unrecoverable failures. The
system also adaptively learns an online failure rate for each
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action in the state machine to determine the level of human
intervention required in the event of a failure. Though failure
detection is a crucial aspect for failure recovery, it is an
entirely separate research topic in itself. For the sake of this
work we assume that the system has the inherent ability to
detect failure. The novel contributions of this work are :
1) A generalized logic based recovery algorithm where the
user does not need to identify every possible failure case.
2) A novel method for combining expert interfaces to assist
in failure recovery through shared autonomy.

In the following sections, we describe the related work
to this paper, followed by which we present a System
Description and Overview of task executives and shared
autonomy. Then we elaborate on the Behavioral Executive
followed by the Expert Interface. In the final two sections
we present our Experimental Results and Conclusions.

II. RELATED WORK

Long term autonomy has been addressed by many re-
searchers in their system specific capacities. Robots which
aim for long term autonomy have been demonstrated in
numerous cases, for example where robots have been used
tour guides. To address failure recovery in these robotic
systems, varying levels of human intervention are directed
towards altering the environment of the robot to ensure
successful operation.

RHINO [3], the first robotic tour guide, subsequently
MINERVA [4], Mobots [5], Robox [6] and Jinny [7] nav-
igate around museum environments with varying degrees of
success. Since these robots operated in environments which
were highly dynamic, their success depended on efficient
localization. Hence occasional modifications had to be made
to their map of the environment to ensure their localization
was accurate. This form of human intervention involves
directly altering the environment to ensure that the robots
can function in a robust fashion. Though this technique is
effective for localization tasks, in most robot autonomy tasks
modifying the environment can have consequences as some
modes of the operation of the robot may depend on its
perception of the environment.

In the space exploration industry where failure free opera-
tion is absolutely critical to mission success [8], systems tend
to demonstrate a high level of robustness by either combining
autonomy and human input or relying entirely on human
assisted operation. Though the problem of generalized task
level failure recovery has not been explicitly addressed,
task specific recovery has been addressed by previous work.
There have been two areas of research in this field. One
where task specific recovery behaviors are scripted into the
system, like the ability to handle navigation failures in the
Urban Car Challenge [9]. The other where some form of
human input has been injected into a system to achieve a
high level of robustness in human environments. Researchers
at Bosch [10] and Willow Garage [11] have also argued
for human intervention in robotic systems for long term
autonomy, but the level of human intervention required still

seems to be an open research question. We try to address
some of these issues in this paper.

III. SYSTEM DESCRIPTION AND OVERVIEW

For executing high level task oriented commands, the
current state-of-the-art mostly utilize task-level executives.
Although the theory for these executives have existed for
decades [12], there has been little research on generalized
failure recovery in these systems. The most effective of these
systems are used to build and execute hierarchical concurrent
state machines [13] [14] to enable seamless integration of
the various tasks required to achieve the robot’s goal or
mission. In general, the robot’s goal can be specified in terms
of a set of hierarchal tasks which are captured by these
systems. For instance, in a drink fetching application, the
set of tasks would involve opening a container, looking for
a drink, retrieving the drink from the container and closing
the container. Such simple tasks, in general encapsulate a
variety of components like planning, perception, reasoning,
navigation, etc. In such cases we use a shared autonomy
intervention at various stages of the task execution to recover
from failure. We define shared autonomy as a partial or full
replacement of an action that the robot has to execute to
accomplish a specific task. In this paper we use this definition
of shared autonomy to define levels of human intervention
for failure recovery while keeping the original system fully
autonomous.
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A. Shared Autonomy

High level robot tasks can be broadly classified as either
some form of information acquisition, information analysis,
decision making or plan execution. Since these high level
tasks are used in a task executive, our shared autonomy
interface directly interacts and replaces these tasks in the
event of an expert recovery. When queried, the expert has
the ability to intervene and supersede any stage of the robot’s
task execution pipline. The generalized architecture for our
system is depicted in Fig 2 There have been attempts
to preempt failure through planning [15], but our system
addresses situations which require recovery since all failures
cannot be preempted.

IV. BEHAVIORAL EXECUTIVE

Most state machines that are designed for robot applica-
tions are non ergodic in nature, i.e every state cannot be
reached from every other state in the state machine. The non-
ergodicity of these state machines makes task level recovery
impossible, as the state machines cannot revisit the states
that it had occupied before the current failure state. This is
demonstrated in the example state chart [16] in Fig 3(a). For
instance if the action in state FOB fails, the state machine
fails. Designing recovery behaviors in this state machine is
trivial, given its relative simplicity. The state machine could
be redesigned to revisit a select set of states in the event of a
failure. Though trivial given the number of states in the state
machine, this approach cannot be generalized as it is tough to
reason about relations between states in large state machines.
This tends to be the case in state machines designed for
most robot applications. In general, robot state machines to
perform a certain task can be extremely complex. Unless
explicitly defined by the designer of the state machine, craft-
ing recovery behaviors to account for all possible failures is
non trivial and generally intractable. To address this specific
issue we introduce a generalized failure recovery mechanism,
through the introduction of a meta state called the oracle .

A. Oracle State

The oracle is a meta state which can help the state machine
transition from any failed state to any other state in the state
machine. If the state machine were formulated as a graph,
then the introduction of the oracle makes all nodes in the
graph accessible as it shares an edge with every node in
the graph. This is illustrated in Fig 3. If an action fails, it
results in the failure of the state containing the action. In
this case, the oracle executes a set of logic based recovery
behaviors before querying the expert. These logic based
recovery behaviors either execute a set of preconditions for
the current state to succeed or transition the state machine
to a previous state without any preconditions. States without
preconditions are Markovian and hence transitioning to them
does not violate any consistencies in the state machine. In the
event of encoutering a high failure state the oracle queries

an expert for help.

Algorithm 1: The Oracle’s logic based shared autonomy
recovery algorithm

Input: Set of States S , Current Failed State F(st) and
Preconditions of States P(S ) where st ∈S

Output: Recovery State Rct
if F(st) = F(st−1) then

Attempt = TRUE
F(st−1) = F(st);
i = 0;
while i < t do

if P(si) is NULL then
Most Recent State, Rst−1 = si;

end
i = i+1;

end
if F(st) = LOW FAILURE then

if P(st) is NULL then
Rct = Rst−1

else
success = execute(P(st));
if success = TRUE then

Rct = st
else

Rct = Rst−1
end

end
else if F(st) = MODERATE FAILURE then

if P(st) is NULL then
if Attempt is FALSE then

Rct = Rst−1
else

Rct = Expert()
end

else
success = execute(P(st));
if success = TRUE then

if Attempt = FALSE then
Rct = st

else
Rct = Expert()

end

else
if Attempt = FALSE then

Rct = Rst−1
else

Rct = Expert()
end

end
end

else
Rct = Expert()

end
return Rct ;

The oracle adaptively learns a limited memory failure rate
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for each state. Since this memory is a tunable parameter the
frequency of expert intervention can be set by the designer
of the state machine. This enables the oracle to classify
the states as LOW FAILURE, MODERATE FAILURE or
HIGH FAILURE states. The oracle’s shared autonomy re-
covery algorithm is illustrated in Algorithm 1.

B. Preconditions

For most actions in states to succeed, there needs to be a
set of preconditions that need to satisfied which are crucial
to the success of that task. Defining the preconditions, for a
state can be determined by the designer of the state machine
based on the actions being carried out in the state. For
example, if you consider the action of grasping an object,
the preconditions of this action would be :
a) An object has been detected
b) A collision map for the environment is available
c) The gripper is empty.
Since these preconditions are task specific and determining
them is strictly based on the design of the system, the
designer can specify these preconditions during the state ma-
chine construction in our current system. During the normal
execution of tasks the preconditions would not be invoked as
they would have been satisfied by previous actions executed
by the state machine. These preconditions are invoked only
when a particular action fails. The precondition handling is
controlled by the oracle

V. EXPERT INTERFACE

When the oracle queries the expert on the event of an
action failure, the expert through an interface can transition
the state machine to any state in the state machine for
recovery. The expert also has the ability to supersede failure
states through user defined shared autonomy interfaces and
subsequently transition the state machine into a new state.
These shared autonomy interfaces can be used to replace

specific actions in the states of the state machine. This
solution is particularly useful when the robot encounters
situations which are unresolvable autonomously. For instance
if a perception action fails to segment an object of interest,
the expert can intervene with a user assisted segmentation
interface. This will allow the expert to supersede the state
performing the perception action and continue with the exe-
cution of the state machine. The assumption in this approach
is that ultimately the expert can resolve all failures. The two
shared autonomy interfaces that we provide and use in our
frame work are a perceptual shared autonomy interface and
a manipulation shared autonomy interface.

A. Shared Autonomy

In the perceptual shared autonomy interface, we replace
the robot’s object detection module with a human assisted
interface. The human assisted perception interface lets the
human select a region of interest and the lets the system
estimate the object based on the grabcut algorithm [17]. Sim-
ilarly, the manipulation shared autonomy interface consists
of a 6 degree of freedom teleoperation module which enables
the expert to supersede the planning and control phase during
manipulation failures.

6 Degree of Freedom
Cartesian Tele-operation

Shared Autonomy InterfacesShared Autonomy Interfaces

Human Human 
InterventionIntervention

Plan ExecutionPlan Execution

Object Detection
&

Segmentation

Human Human 
InterventionIntervention

InformationInformation
AnalysisAnalysis

Perceptual Shared Autonomy Manipulation Shared Autonomy

Fig. 4. The following diagram shows two shared autonomy interfaces.
1) The Perceptual Shared Autonomy interface is used to replace object
detection with human assisted object detection and segmentation. 2) The
Manipulation Shared Autonomy interface is used to replace planning and
control with a 6 degree of freedom teleoperation device.

VI. EXPERIMENTS

To demonstrate the efficiency of our approach, we have
built our system on top of the existing SMACH [2] architec-
ture present in ROS [18]. SMACH is a task executive where
tasks can be specified in the form of a state machine. The
state machine is defined in terms of states, where these states
consist of actions that need to be executed. Transitions are
enabled by mapping the outcome of these states to the other
states in the state machine.
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A. SMACH Failures

In SMACH, tasks relating to the accomplishment of a
goal are specified as states in a state machine. Based on the
outcome of the task execution, the state machine transitions
from one state to another. In the underlying definition of a
SMACH state machine, every outcome of the state in the
state machine is mapped to a transition. In the event of an
unsuccessful outcome, the state machine either transitions
to some user specified state or it aborts. The aborted state
machine would technically result in a failed attempt at the
task. Our experiments were performed on state machines
designed for the PR2 [19] robot built by Willow Garage.
We tested the system on two separate use cases. The first
use case involves a simple pick and place operation and in
the second use case, the robot is commanded to retrieve a
drink from the refrigerator.
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1) Use Case 1: Pick and Place Operations: In our first
use case, we evaluate the robot’s long term performance on
a simple pick and place operation. Here the robot is tasked
with the detection of an object on a tabletop and moving it
to a new location. The order of actions performed by the
robot include, moving the arms out of the line of sight →
pointing of the head of the robot → detecting the tabletop
→ estimating the collision map → picking the object →

placing the object. As earlier noted these are high level task
specifications outlined in the task executive and they do not
detail low level behavior. The low level behavior embedded
into these tasks are not visible to the task executive. The
state machine of this system with the oracle is illustrated in
Fig 5. We performed this test for 150 cycles over a period
of 20 hours.
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Fig. 8. Time series graph showing frequency of oracle recoveries and
expert assists in 100 trials of autonomous operation over 16 hours.

2) Use Case 2: Drink Retrieval: In our second use case,
we tested the algorithm on a drink retrieval state machine.
Here the robot is tasked with retrieving a drink from a
refrigerator. The level of complexity involved in the drink
retrieval experiment is higher than that of the pick and place
operation. Thus the robot state machine includes far greater
number of states and hence it is more prone to failure. The
order of actions performed by the robot include, raising
the torso → opening the refrigerator → moving into the
refrigerator → detecting the drink → picking the drink →
moving out of the refrigerator→ closing the door→ moving
to home position→ handing the drink. The state machine
of this system with the oracle is illustrated in Fig 7. We
performed this test for 100 cycles over a period of 10 hours.
As it can be noted from Table I, the introduction of an oracle
drastically reduces human supervision in such systems. In
the absence of the oracle, every oracle recovered trial would

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2012 IEEE International Conference on
Robotics and Automation. Received September 16, 2011.



TABLE I
SHARED AUTONOMY STATISTICS

Experiment Runs Oracle Recoveries Expert Interventions
Pick and Place 150 39 6
Drink Serving 100 46 9

have required human intervention. Given these statistics we
can note that human intervention for the pick and place
experiment was reduced from 26% to 4% and in the drink
retrieval experiment, human intervention was reduced from
46% to 9%. On an average we get a 5 fold% increase in
performance.

VII. DISCUSSION & FUTURE WORK

In order to attain the goal of long term autonomy, robotic
systems need to be made both reliable and robust. How-
ever this cannot be exclusively achieved through task-level
robustness as it is a component of the framework and not
its entirety. There needs to be a considerable emphasis on
system-level robustness too. An important design feature for
robots systems would include ability to recover from failure.
Simply because these systems cannot be designed to preempt
every possible failure case.

In this paper, we have outlined a generalized task based
recovery architecture which can be readily applied to any
robotic system. From our experiences in continuous op-
erations we argue that shared autonomy is an imperative
component to achieve reliable long term operation in robotic
systems. Sparsely supervised systems with effective failure
recovery strategies can help achieve otherwise unattainable
goals in robotic applications.

Since the size of such systems have a tendency to grow
exponentially with complexity we intend to further inves-
tigate possible strategies to perform efficient inference on
these systems. In the future we also intend to model these
systems to constrain the search space of possible recovery
behaviors. All the software used in this paper is readily avail-
able for download on http://www.ros.org/wiki/
recovery_shared_autonomy.

A. Unrecoverable Failures

Though the oracle based recovery can account for task
failures, the system however does not account for non
software related failures. These would come under the gen-
eral umbrella of unrecoverable failures, as they cannot be
addressed from the software side. This would include kernel
panics, hardware failures, electronic failures and battery
problems. The only realistic recovery possible in such cases
is to store the state of the system externally and debug the
system. Then the robot can be restarted from its externally
stored state.
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